Globally convergence of nonlinear conjugate gradient method for unconstrained optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1101-1117.

The conjugate gradient method is a useful and powerful approach for solving large-scale minimization problems. In this paper, a new nonlinear conjugate gradient method is proposed for large-scale unconstrained optimization. This method include the already existing two practical nonlinear conjugate gradient methods, to combine the nice global convergence properties of Fletcher-Reeves method (abbreviated FR) and the good numerical performances of the Polak–Ribiére–Polyak method (abbreviated PRP), which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. Our numerical results show that of the new method is very efficient for the given test problems. In addition we will study the methods related to the new nonlinear conjugate gradient method.

DOI : 10.1051/ro/2017028
Classification : 65K05, 90C25, 90C26, 90C27, 90C30
Mots-clés : Unconstrained optimization, conjugate gradient method, line search, global convergence
Sellami, B. 1 ; Belloufi, M. 1 ; Chaib, Y. 1

1 Department of mathematics and informatics, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria.
@article{RO_2017__51_4_1101_0,
     author = {Sellami, B. and Belloufi, M. and Chaib, Y.},
     title = {Globally convergence of nonlinear conjugate gradient method for unconstrained optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1101--1117},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/ro/2017028},
     mrnumber = {3783936},
     zbl = {1398.65129},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2017028/}
}
TY  - JOUR
AU  - Sellami, B.
AU  - Belloufi, M.
AU  - Chaib, Y.
TI  - Globally convergence of nonlinear conjugate gradient method for unconstrained optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 1101
EP  - 1117
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2017028/
DO  - 10.1051/ro/2017028
LA  - en
ID  - RO_2017__51_4_1101_0
ER  - 
%0 Journal Article
%A Sellami, B.
%A Belloufi, M.
%A Chaib, Y.
%T Globally convergence of nonlinear conjugate gradient method for unconstrained optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 1101-1117
%V 51
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2017028/
%R 10.1051/ro/2017028
%G en
%F RO_2017__51_4_1101_0
Sellami, B.; Belloufi, M.; Chaib, Y. Globally convergence of nonlinear conjugate gradient method for unconstrained optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 1101-1117. doi : 10.1051/ro/2017028. http://archive.numdam.org/articles/10.1051/ro/2017028/

M. Al-Baali, Descent property and global convergence of the fletcher reeves method with inexact line search. IMA J. Numer. Anal. 5 (1985) 121–124. | DOI | MR | Zbl

M. Al-Baali, New property and global convergence of the fletcher-reeves method with inexact line searches. IMA J. Numer. Anal. 5 (1985) 122–124. | DOI | MR | Zbl

N. Andrei, An unconstrained optimization test functions collection. Adv. Model. Optim 10 (2008) 147–161. | MR | Zbl

I. Bongartz, A.R. Conn, N. Gould and P.L. Toint, Cute: Constrained and unconstrained testing environment. ACM Trans. Math. Softw. (TOMS) 21 (1995) 123–160. | DOI | Zbl

Y. Dai, J. Han, G. Liu, D. Sun, H. Yin and Y. Yuan, Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim. 10 (2000) 345–358. | DOI | MR | Zbl

Y. Dai and Y. Yuan, Some properties of a new conjugate gradient method, in Advances in Nonlinear Programming. Springer (1998) 251–262. | MR | Zbl

Y. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. | DOI | MR | Zbl

Y. Dai and Y. Yuan, A class of globally convergent conjugate gradient methods. Sci. China Ser. A: Math. 46 (2003) 251–261. | DOI | MR | Zbl

Y. Dai and Y.-X. Yuan, Convergence properties of the fletcher-reeves method. IMA J. Numer. Anal. 16 (1996) 155–164. | DOI | MR | Zbl

J.W. Daniel, The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal. 4 (1967) 10–26. | DOI | MR | Zbl

J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992) 21–42. | DOI | MR | Zbl

M. Hestenes, Methods of conjugate gradients for solving linear systems. Res. Nation. Bureau Standards 49 (1952) 409–436. | DOI | MR | Zbl

Y. Hu and C. Storey, Global convergence result for conjugate gradient methods. J. Optim. Theory Appl. 71 (1991) 399–405. | DOI | MR | Zbl

J. Moré and E.D. Dolan, Benchmarking optimization software with performance files. Math. Program 91 (2002) 201–213. | DOI | MR | Zbl

B.T. Polyak, The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9 (1969) 94–112. | DOI | Zbl

M. Powell, Nonconvex minimization calculations and the conjugate gradient method. Numer. Anal. (1984) 122–141. | MR | Zbl

B. Sellami, Y. Laskri and R. Benzine, A new two-parameter family of nonlinear conjugate gradient methods. Optimization 64 (2015) 993–1009. | DOI | MR | Zbl

D.F. Shanno, Conjugate gradient methods with inexact searches. Math. Oper. Res. 3 (1978) 244–256. | DOI | MR | Zbl

Cité par Sources :