Portfolio selection with robust estimators considering behavioral biases in a causal network
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 577-591.

In this study, we develop a behavioral portfolio selection model that incorporates robust estimators for model inputs in order to reduce the need to change the portfolio over consecutive periods. It also includes Conditional Value at Risk as a sub-additive risk measure, which is preferable in behavioral portfolio selection. Finally, we model a varying risk attitude in a causal network in which investor behavioral biases and latest realized return are related to using a causation algorithm. We also provide a case study in Tehran Stock Exchange, where the results disclose that albeit our model is not mean-variance efficient, it selects portfolios that are robust, well diversified, and have less utility loss compared to a well-known behavioral portfolio model.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2017056
Classification : G11, G02, C02, C44, C61, C51
Mots-clés : Behavioral portfolio selection, , robust estimator, conditional value at risk, behavioral biases, causal relationship
Momen, Omid 1 ; Esfahanipour, Akbar 1 ; Seifi, Abbas 1

1
@article{RO_2019__53_2_577_0,
     author = {Momen, Omid and Esfahanipour, Akbar and Seifi, Abbas},
     title = {Portfolio selection with robust estimators considering behavioral biases in a causal network},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {577--591},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/ro/2017056},
     zbl = {1426.91254},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2017056/}
}
TY  - JOUR
AU  - Momen, Omid
AU  - Esfahanipour, Akbar
AU  - Seifi, Abbas
TI  - Portfolio selection with robust estimators considering behavioral biases in a causal network
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 577
EP  - 591
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2017056/
DO  - 10.1051/ro/2017056
LA  - en
ID  - RO_2019__53_2_577_0
ER  - 
%0 Journal Article
%A Momen, Omid
%A Esfahanipour, Akbar
%A Seifi, Abbas
%T Portfolio selection with robust estimators considering behavioral biases in a causal network
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 577-591
%V 53
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2017056/
%R 10.1051/ro/2017056
%G en
%F RO_2019__53_2_577_0
Momen, Omid; Esfahanipour, Akbar; Seifi, Abbas. Portfolio selection with robust estimators considering behavioral biases in a causal network. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 577-591. doi : 10.1051/ro/2017056. http://archive.numdam.org/articles/10.1051/ro/2017056/

[1] C. Acerbi, Spectral measures of risk: a coherent representation of subjective risk aversion. J. Banking Finance 26 (2002) 1505–1518.

[2] A. Adam, M. Houkari and J. Laurent, Spectral risk measures and portfolio selection. J. Banking Finance 32 (2008) 1870–1882.

[3] A. Albadvi, S.K. Chaharsooghi and A. Esfahanipour, Decision making in stock trading: An application of PROMETHEE. Eur. J. Oper. Res. 177 (2007) 673–683. | Zbl

[4] G.J. Alexander and A.M. Baptista, Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis. J. Econ. Dyn. Control. 26 (2002) 1159–1193. | Zbl

[5] G.J. Alexander and A.M. Baptista, CVaR as a Measure of Risk: Implications for Portfolio Selection, in EFA Annual Conference, Available at SSRN: https://ssrn.com/abstract=424348 or http://dx.doi.org/10.2139/ssrn.424348 (2003)

[6] G.J. Alexander and A.M. Baptista, A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model. Manag. Sci. 50 (2004) 1261–1273.

[7] G.J. Alexander and A.M. Baptista, Portfolio selection with mental accounts and delegation. J. Banking Finance 35 (2011) 2637–2656.

[8] G.J. Alexander, A.M. Baptista and S. Yan, Portfolio Selection with Mental Accounts and Estimation Risk. J. Empirical Finance 41 (2017) 161–186.

[9] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent Measures of Risk. Math. Finance 9 (1999) 203–228. | Zbl

[10] A.M. Baptista, Portfolio selection with mental accounts and background risk. J. Banking Finance 36 (2012) 968–980.

[11] A.B. Berkelaar, R. Kouwenberg and T. Post, Optimal portfolio choice under loss aversion. Rev. Econ. Statistics. 86 (2004) 937–987.

[12] A. Bilbao-Terol, M. Arenas-Parra, V. Canal-Fernández and C. Bilbao-Terol, Multi-criteria decision making for choosing socially responsible investment within a behavioral portfolio theory framework: a new way of investing into a crisis environment. Ann. Oper. Res. 247 (2015) 549–580. | Zbl

[13] T. Björk, A. Murgoci and X. Zhou, Mean-Variance Portfolio Optimization with State Dependent Risk Aversion. Math. Finance 24 (2014) 1–24. | Zbl

[14] M. Brandt and K. Wang, Time-varying risk aversion and unexpected inflation. J. Monetary Econom. 50 (2003) 1457–1498.

[15] J.L.P. Brunel, Goal-Based Wealth Management in Practice. J. Wealth Manag. 14 (2011) 17–26.

[16] M. Brunnermeier and S. Nagel, Do Wealth Fluctuations Generate Time-Varying Risk Aversion? Micro-Evidence on Individuals’ Asset Allocation (Digest Summary). Amer. Econom. Rev. 98 (2008) 713–736.

[17] N. Canner, N. Mankiw and D. Weil, An asset allocation puzzle. Amer. Econom. Rev. 87 (1997) 181–191.

[18] G. Chen and K. Kim, Trading performance, disposition effect, overconfidence, representativeness bias, and experience of emerging market investors. J. Behavior. Decis. Making 20 (2007) 425–451.

[19] A. Cillo and P. Delquié, Mean-risk analysis with enhanced behavioral content. Eur. J. Oper. Res. 239 (2014) 764–775. | Zbl

[20] L. Cronbach, Coefficient alpha and the internal structure of tests. Psychometrika (1951). | Zbl

[21] S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts. J. Fin. Quantitative Anal. 45 (2010) 311–334.

[22] S. Das and M. Statman, Beyond mean-variance: portfolios with derivatives and non-normal returns in mental accounts, Available at, SSRN (2009) 1782309.

[23] S. Das and M. Statman, Options and structured products in behavioral portfolios. J. Econom. Dynamics Control. 37 (2013) 137–153. | Zbl

[24] V. Demiguel, A. Martin-Utrera and F.J. Nogales, Size matters: Optimal calibration of shrinkage estimators for portfolio selection. J. Banking Finance 37 (2013) 3018–3034.

[25] V. Demiguel and F. Nogales, Portfolio Selection with Robust Estimation. Oper. Res. 57 (2009) 560–577. | Zbl

[26] Y. Dong and A. Thiele, Robust Investment Management With Uncertainty in Fund Managers’ Asset Allocation. RAIRO: OR 49 (2015) 821–844. | Zbl

[27] D. Ellsberg, Risk, ambiguity, and the Savage axioms. The Quarterly J. Econom. 75 (1961) 643–669. | Zbl

[28] A. Esfahanipour and S. Mousavi, A genetic programming model to generate risk-adjusted technical trading rules in stock markets. Expert Syst. Appl. 38 (2011) 8438–8445.

[29] F.J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: contributions from operations research and finance. Ann. Oper. Res. 176 (2010) 191–220. | Zbl

[30] F.J. Fabozzi, P.N. Kolm, D.A. Pachamanova and S.M. Focardi, Robust portfolio optimization and management. John Wiley and Sons Inc., Hoboken, New Jersey (2007).

[31] C. Fontana and M. Schweizer, Simplified mean-variance portfolio optimisation. Math. Financial Econom. 6 (2012) 125–152. | Zbl

[32] A.-M. Fuertes, Y.G. Muradoglu and B. Ozturkkal, A behavioral analysis of investor diversification. Eur. J. Finance 20 (2014) 499–523.

[33] E.G. De Giorgi and T. Hens, Prospect theory and mean-variance analysis: does it make a difference in wealth management?. Investment Manag. Financial Inov. 6 (2009) 122–129.

[34] D. Goldfarb and G. Iyengar, Robust portfolio selection problems. Math. Oper. Res. 28 (2003) 1–38. | Zbl

[35] J. Grable, R. Lytton, B. O’Neill, S.-H. Joo and D. Klock, Risk Tolerance, Projection Bias, Vividness, and Equity Prices. J. Investing 15 (2006) 68–75.

[36] C. Gregory, K. Darby-Dowman and G. Mitra, Robust optimization and portfolio selection: The cost of robustness. Eur. J. Operat. Res. 212 (2011) 417–428. | Zbl

[37] L. Guiso and M. Paiella, Risk aversion, wealth, and background risk. J. Europ. Econom. Association 6 (2008) 1109–1150.

[38] M. Halek and J. Eisenhauer, Demography of risk aversion. J. Risk Insurance 68 (2001) 1–24.

[39] C. Heath and A. Tversky, Preference and belief: Ambiguity and competence in choice under uncertainty. J. Risk Uncertainty 4 (1991) 5–28. | Zbl

[40] C. Holt and S. Laury, Risk aversion and incentive effects. Amer. Econom. Rev. 92 (2002) 1644–1655.

[41] J.C. Hull, Risk Management and Financial Institutions, Forth, Hoboken, New Jersey (2015).

[42] H. Jin and X.Y. Zhou, Behavioral portfolio selection in continuous time. Math. Finance 18 (2008) 385–426. | Zbl

[43] P. Jorion, Bayes-Stein Estimation for Portfolio Analysis. J. Financial Quant. Anal. 21 (1986) 279–292.

[44] P. Jorion, Value at risk: the new benchmark for managing financial risk, Third, McGraw-Hill, New York (2007).

[45] D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk. J. Econom. Soc. 47 (1979) 263–291. | Zbl

[46] D. Kahneman and A. Tversky, Choices, values, and frames. Amer. Psychologist. 39 (1984) 341–350.

[47] F. Knight, Risk, uncertainty and profit, Dover Publication Inc., New York (2012).

[48] P. Krokhmal, J. Palmquist and S. Uryasev, Portfolio Optimization With Conditional Value-At-Risk Objective and Constraints. J. Risk. 4 (2002) 1–36.

[49] G.J. Lauprete, A.M. Samarov and R.E. Welsch, Robust portfolio optimization. Metrika. 55 (2002) 139–149. | Zbl

[50] O. Ledoit and M. Wolf, Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empirical Finance 10 (2003) 603–621.

[51] D. Li and W. Ng, Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation. Math. Finance 10 (2000) 387–406. | Zbl

[52] A.E.B. Lim and X.Y. Zhou, Mean-Variance Portfolio Selection with Random Parameters in a Complete Market. Math. Oper. Res. 27 (2002) 101–120. | Zbl

[53] J. Liu, X. Jin, T. Wang and Y. Yuan, Robust multi-period portfolio model based on prospect theory and ALMV-PSO algorithm. Expert Syst. Appl. 42 (2015) 7252–7262.

[54] L.L. Lopes, Between hope and fear: The psychology of risk, in: Advances in Experimental Social Psychology (1987) 255–295.

[55] A. Lusardi, Explaining why so many households do not save (2000).

[56] H. Markowitz, Portfolio Selection. J. Finance 7 (1952) 77–91.

[57] B. De Martino, D. Kumaran, B. Seymour and R. Dolan, Frames, biases, and rational decision-making in the human brain. Sci. 313 (2006) 684–687.

[58] B.V. De M. Mendes and R.P.C. Leal, Robust modeling of multivariate financial data. Rio de Janeiro, Brazil (2003).

[59] O. Momen, A. Esfahanipour and A. Seifi, Revised Mental Accounting: A Behavioral Portfolio Selection, in 12th Intern. Confer. Industrial Engineering (ICIE 2016), Tehran, Iran (2016) 25–26.

[60] O. Momen, A. Esfahanipour, A. Seifi, A Robust Behavioral Portfolio Selection: Model with Investor Attitudes and Biases. Operat. Res. Inter. J. (2017) 1–20. DOI: 10.1007/s12351-017-0330-9.

[61] O. Momen, A. Esfahanipour and A. Seifi, Prescriptive Portfolio Selection: A compromise between Fast and Slow Thinking. Qualitative Reserch Financial Markets 9 (2017) 98–116.

[62] D.A. Moore and Pj.J. Healy, The trouble with overconfidence. Psychological Rev. 115 (2008) 502–517.

[63] R. Morin and A. Suarez, Risk aversion revisited. Journal of Finance. 38 (1983) 1201–1216.

[64] Y. Mountain, E. Management and H. Kong, Optimal lot Solution to Cardinality Constrained Mean – Variance Formulation for Portfolio Selection. Math. Finance 16 (2006) 83–101.

[65] S. Mousavi, A. Esfahanipour and M.H.F. Zarandi, MGP-INTACTSKY: Multitree Genetic Programming-based learning of INTerpretable and ACcurate TSK sYstems for dynamic portfolio trading. Appl. Soft Computing J. 34 (2015) 449–462.

[66] D. Nevins, Goals-based investing: Integrating traditional and behavioral finance. J. Wealth Manag. 6 (2004) 8–23.

[67] L. Nordén, Individual home bias, portfolio churning and performance. Eur. J. Finance 16 (2010) 329–351.

[68] C.H. Pan and M. Statman, Questionnaires of Risk Tolerance, Regret, Overconfidence, and Other Investor Propensities. J. Investment Consulting 13 (2012) 54–63.

[69] C. Perret–Gentil and M. Victoria-Feser, Robust Mean-Variance Portfolio Selection, Geneva (2004).

[70] M.M. Pompian, Behavioral Finance and Wealth Management: How to Build Optimal Portfolios That Account for Investor Biases, 2nd edition. John Wiley and Sons, New Jersey (2012).

[71] R.T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk. J. Risk 2 (2000) 21–41.

[72] M. Roszkowski and G. Snelbecker, Effects of ``framing” on measures of risk tolerance: Financial planners are not immune. J. of Behavior. Econom. 19 (1990) 237–246.

[73] C.R. Sahm, How much does risk tolerance change? Quarterly J. Finance 2 (2012) 1–38.

[74] R. Scheines, P. Spirtes and C. Glymour, The TETRAD project: Constraint based aids to causal model specification. Multivariate Behavior. Res. 33 (1998) 65–117.

[75] S. Sharma, Applied Multivariate Techniques, New York (1996).

[76] K. Shaw, An empirical analysis of risk aversion and income growth. J. Labor Economics. 14 (1996) 626–653.

[77] H. Shefrin, Behavioral portfolio selection, Encyclopedia of Quantitative Finance (2007).

[78] H. Shefrin and M. Statman, Behavioral Portfolio Theory. J. Financial Quantitative Anal. 35 (2000) 127–151.

[79] H. Shefrin and R. Thaler, The behavioral life-cycle hypothesis. Economic Inquiry. 26 (1988) 609–643.

[80] Y. Shi, X. Cui and D. Li, Discrete-time behavioral portfolio selection under cumulative prospect theory. J. Econom. Dynamics Control. 61 (2015) 283–302. | Zbl

[81] N. Siebenmorgen and M. Weber, A behavioral model for asset allocation. Financial Markets Portfolio Manag. 17 (2003) 15–42.

[82] P. Spirtes and C. Glymour, An Algorithm for Fast Recovery of Sparse Causal Graphs. Soc. Sci. Comput. Rev. 9 (1991) 62–71.

[83] P. Spirtes, C. Glymour and R. Scheines, Causation, prediction, and search. MIT Press, Cambridge, Massachusetts (2000). | Zbl

[84] M. Statman, What Is Behavioral Finance? Handbook of Finance (2008).

[85] M. Statman, S. Thorley and K. Vorkink, Investor Overconfidence and Trading. In Vol. 19 (2006) 1531–1565.

[86] M. Statman, S. Thorley, K. Vorkink, M. Statman, S. Thorley and K. Vorkink, Investor Overconfidence and Trading Volume. In Vol. 19 (2014) 1531–1565.

[87] C. Stein, Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution, in Proceedings of the Third Berkeley Symp. Math. Statist. Probab (1956) 197–206. | Zbl

[88] G. Szegö, Measures of risk. J. Banking. Finance 26 (2002) 1253–1272.

[89] A. Tversky and D. Kahneman, Rational choice and the framing of decisions. J. Businessusiness 59 (1986) 251–278.

[90] D. Urbig, J. Stauf and G. Weitzel, What is your level of overconfidence? A strictly incentive compatible measurement of absolute and relative overconfidence, Utrecht School of Economics, Tjalling C. Koopmans Research Institute (2009) 9–20.

[91] A. Vissing-Jorgensen, Perspectives on Behavioral Finance: Does ``Irrationality” Disappear with Wealth? Evidence from Expectations and Actions. NBER Macroeconomics Annual. 18 (2003) 139–194.

[92] F.A. Wang, Overconfidence, investor sentiment, and evolution. J. Financial Intermediation 10 (2001) 138–170.

[93] S. Zhang, H.Q. Jin and X.Y. Zhou, Behavioral portfolio selection with loss control. Acta Math. Sinica, English Ser. 27 (2011) 255–274. | Zbl

[94] X.Y. Zhou and G. Yin, Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model. SIAM J. Control Optimiz. 42 (2003) 1466–1482. | Zbl

Cité par Sources :