Compromise solutions, as feasible points as close as possible to the ideal (utopia) point, are important solutions in multiple objective programming. It is known in the literature that each compromise solution is a properly efficient solution if the sum of the image set and conical ordering cone is closed. In this paper, we prove the same result in a general setting without any assumption.
Mots-clés : Multiple objective programming, compromise solution, properly efficient solution
@article{RO_2018__52_2_383_0, author = {Soleimani{\textendash}Damaneh, Majid and Zamani, Moslem}, title = {On compromise solutions in multiple objective programming}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {383--390}, publisher = {EDP-Sciences}, volume = {52}, number = {2}, year = {2018}, doi = {10.1051/ro/2017071}, zbl = {1401.90213}, mrnumber = {3880533}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2017071/} }
TY - JOUR AU - Soleimani–Damaneh, Majid AU - Zamani, Moslem TI - On compromise solutions in multiple objective programming JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2018 SP - 383 EP - 390 VL - 52 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2017071/ DO - 10.1051/ro/2017071 LA - en ID - RO_2018__52_2_383_0 ER -
%0 Journal Article %A Soleimani–Damaneh, Majid %A Zamani, Moslem %T On compromise solutions in multiple objective programming %J RAIRO - Operations Research - Recherche Opérationnelle %D 2018 %P 383-390 %V 52 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2017071/ %R 10.1051/ro/2017071 %G en %F RO_2018__52_2_383_0
Soleimani–Damaneh, Majid; Zamani, Moslem. On compromise solutions in multiple objective programming. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 2, pp. 383-390. doi : 10.1051/ro/2017071. http://archive.numdam.org/articles/10.1051/ro/2017071/
[1] Multicriteria Optimization. Springer, Berlin (2005) | MR | Zbl
,[2] Compromise solutions and estimation of the noninferior set. J. Optim. Theory Appl. 28 (1979) 29–47 | DOI | MR | Zbl
,[3] Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22 (1968) 618–630 | DOI | MR | Zbl
,[4] Proper efficiency with respect to cones. J. Optim. Theory Appl. 36 (1982) 387–407 | DOI | MR | Zbl
,[5] Strongly proper efficient solutions: efficient solutions with bounded trade-offs. J. Optim. Theory Appl. 168 (2016) 864–883 | DOI | MR | Zbl
, and ,[6] On efficient solutions with trade-offs bounded by given values. Numer. Functional Anal. Optimiz. 36 (2015) 1431–1447 | DOI | MR | Zbl
and ,[7] Theory of Multiobjective Optimization. Academic Press, Orlando, FL (1985) | MR | Zbl
, and ,[8] Nonsmooth optimization using Mordukhovich’s subdifferential. SIAM J. Control Optim. 48 (2010) 3403–3432 | DOI | MR | Zbl
,Cité par Sources :