An inexact algorithm with proximal distances for variational inequalities
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 1, pp. 159-176.

In this paper we introduce an inexact proximal point algorithm using proximal distances for solving variational inequality problems when the mapping is pseudomonotone or quasimonotone. Under some natural assumptions we prove that the sequence generated by the algorithm is convergent for the pseudomonotone case and assuming an extra condition on the solution set we prove the convergence for the quasimonotone case. This approach unifies the results obtained by Auslender et al. [Math Oper. Res. 24 (1999) 644–688] and Brito et al. [J. Optim. Theory Appl. 154 (2012) 217–234] and extends the convergence properties for the class of φ-divergence distances and Bregman distances.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2017078
Classification : 65K15
Mots-clés : Variational inequalities, proximal distance, proximal point algorithm, quasimonotone and pseudomonotone mapping
Papa Quiroz, E.A. 1 ; Mallma Ramirez, L. 1 ; Oliveira, P.R. 1

1
@article{RO_2018__52_1_159_0,
     author = {Papa Quiroz, E.A. and Mallma Ramirez, L. and Oliveira, P.R.},
     title = {An inexact algorithm with proximal distances for variational inequalities},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {159--176},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {1},
     year = {2018},
     doi = {10.1051/ro/2017078},
     mrnumber = {3812474},
     zbl = {1397.65099},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2017078/}
}
TY  - JOUR
AU  - Papa Quiroz, E.A.
AU  - Mallma Ramirez, L.
AU  - Oliveira, P.R.
TI  - An inexact algorithm with proximal distances for variational inequalities
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2018
SP  - 159
EP  - 176
VL  - 52
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2017078/
DO  - 10.1051/ro/2017078
LA  - en
ID  - RO_2018__52_1_159_0
ER  - 
%0 Journal Article
%A Papa Quiroz, E.A.
%A Mallma Ramirez, L.
%A Oliveira, P.R.
%T An inexact algorithm with proximal distances for variational inequalities
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2018
%P 159-176
%V 52
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2017078/
%R 10.1051/ro/2017078
%G en
%F RO_2018__52_1_159_0
Papa Quiroz, E.A.; Mallma Ramirez, L.; Oliveira, P.R. An inexact algorithm with proximal distances for variational inequalities. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 1, pp. 159-176. doi : 10.1051/ro/2017078. http://archive.numdam.org/articles/10.1051/ro/2017078/

[1] Q.H. Ansari, C.S. Lalitha and M. Mehta, Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization. Taylor Francis Group (2014) 122. | MR | Zbl

[2] A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16 (2006) 697–725. | DOI | MR | Zbl

[3] A. Auslender, M. Teboulle and S. Ben-Tiba, Interior proximal and multiplier methods based on second order homogeneous functionals. Math Oper. Res. 24 (1999) 645–668. | DOI | MR | Zbl

[4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems. Math. Stud. 63 (1994) 123–145. | MR | Zbl

[5] S.A. Brito, J.X. Da Cruz Neto, J.O. Lopes and P.R. Oliveira, Interior algorithm for quasiconvex programming problems and variational inequalities with linear constraints. J. Optim. Theory Appl. 154 (2012) 217–234. | DOI | MR | Zbl

[6] F.H. Clarke, Generalized Gradient and Applications. Transaction of the American Mathematical Society (1975). | MR

[7] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1990). | DOI | MR

[8] J. Eckstein, Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. 83 (1998) 113–123. | DOI | MR | Zbl

[9] F. Facchinei, J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Vols 1 and 2 of Springer Series in Operations Research. Springer-Verlag, New York (2003). | MR | Zbl

[10] P.T. Harker and J.S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48 (1990) 161–220. | DOI | MR | Zbl

[11] A.N. Iusem and M. Nasri, Inexact proximal point methods for equilibrium problems in Banach spaces. Numer. Funct. Anal. Optim. 28 (2007) 1279–1308. | DOI | MR | Zbl

[12] A.N. Iusem and W.A. Sosa, Proximal point method for equilibrium problems in Hilbert spaces. Optimization 59 (2010) 1259–1274. | DOI | MR | Zbl

[13] A. Kaplan and R. Tichatschke, On inexact generalized proximal methods with a weakened error tolerance criterion. Optimization 53 (2004) 3–17. | DOI | MR | Zbl

[14] A. Kaplan and R. Tichatschke, Interior proximal method for variational inequalities on nonpolyhedral sets. Discuss. Math. Diff. Inclusions Control Optim. 30 (2007) 51–59. | DOI | MR | Zbl

[15] A. Kaplan and R. Tichatschke, Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets. Discuss. Math. Diff. Inclusions Control Optim. 30 (2010) 51–59. | DOI | MR | Zbl

[16] N. Langenberg, Pseudomnonotone operators and the Bregman proximal point algorithm. J. Glob. Optim. 47 (2010) 537–555. | DOI | MR | Zbl

[17] N. Langenberg, An interior proximal method for a class of quasimonotone variational inequalities. J. Optim Theory Appl. 155 (2012) 902–922. | DOI | MR | Zbl

[18] N. Langenberg and R. Tichatschke, Interior proximal methods for quasiconvex optimization. J. Glob. Optim. 52 (2012) 641–661. | DOI | MR | Zbl

[19] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, London (1970). | MR | Zbl

[20] E.A. Papa Quiroz and P.R. Oliveira, An extension of proximal methods for quasiconvex minimization on the nonnegative orthant. Eur. J. Oper. Res. 216 (2012) 26–32. | DOI | MR | Zbl

[21] E.A. Papa Quiroz, L. Mallma Ramirez and P.R. Oliveira An inexact proximal method for quasiconvex minimization. Eur. J. Oper. Res. 246 (2015) 721–729. | DOI | MR | Zbl

[22] B.T. Polyak, Introduction to Optimization, Optimization Software. New York (1987). | MR

[23] R.T. Rockafellar and R. Wets, Variational Analysis. Vol. 317 of Grundlehren der Mathematischen, Wissenschaften. Springer (1998). | DOI | MR | Zbl

[24] M.V. Solodov and B.F. Svaiter, An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Math. Oper. Res. 25 (2000) 214–230. | DOI | MR | Zbl

[25] K.D.V. Villacorta and P.R. Oliveira, An interior proximal method in vector optimization. Eur. J. Oper. Res. 214 (2011) 485–492. | DOI | MR | Zbl

[26] Y. Xu, H.Bingsheng and Y. Xiaoming, A hybrid inexact logarithmic-quadratic proximal method for nonlinear complementarity problems. J. Math. Anal. 322 (2006) 276–287. | DOI | MR | Zbl

Cité par Sources :