Bi-objective mean–variance method based on Chebyshev inequality bounds for multi-objective stochastic problems
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1201-1217.

Multi-objective programming became more and more popular in real world decision making problems in recent decades. There is an underlying and fundamental uncertainty in almost all of these problems. Among different frameworks of dealing with uncertainty, probability and statistic-based schemes are well-known. In this paper, a method is developed to find some efficient solutions of a multi-objective stochastic programming problem. The method composed a process of transforming the stochastic multi-objective problem to a bi-objective equivalent using the concept of Chebyshev inequality bounds and then solving the obtained problem with a fuzzy set based approach. Application of the proposed method is examined on two numerical examples and the results are compared with different methods. These comparisons illustrated that the results are satisfying.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2018018
Classification : 60H99
Mots-clés : Multi-objective decision-making, stochastic programming, mean–variance criterion, fuzzy set based approach
Amoozad Mahdiraji, Hannan 1 ; Razavi Hajiagha, Seyed Hossein 1 ; Hashemi, Shide Sadat 1 ; Zavadskas, Edmundas Kazimieras 1

1
@article{RO_2018__52_4-5_1201_0,
     author = {Amoozad Mahdiraji, Hannan and Razavi Hajiagha, Seyed Hossein and Hashemi, Shide Sadat and Zavadskas, Edmundas Kazimieras},
     title = {Bi-objective mean{\textendash}variance method based on {Chebyshev} inequality bounds for multi-objective stochastic problems},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1201--1217},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4-5},
     year = {2018},
     doi = {10.1051/ro/2018018},
     zbl = {1433.90092},
     mrnumber = {3880600},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2018018/}
}
TY  - JOUR
AU  - Amoozad Mahdiraji, Hannan
AU  - Razavi Hajiagha, Seyed Hossein
AU  - Hashemi, Shide Sadat
AU  - Zavadskas, Edmundas Kazimieras
TI  - Bi-objective mean–variance method based on Chebyshev inequality bounds for multi-objective stochastic problems
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2018
SP  - 1201
EP  - 1217
VL  - 52
IS  - 4-5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2018018/
DO  - 10.1051/ro/2018018
LA  - en
ID  - RO_2018__52_4-5_1201_0
ER  - 
%0 Journal Article
%A Amoozad Mahdiraji, Hannan
%A Razavi Hajiagha, Seyed Hossein
%A Hashemi, Shide Sadat
%A Zavadskas, Edmundas Kazimieras
%T Bi-objective mean–variance method based on Chebyshev inequality bounds for multi-objective stochastic problems
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2018
%P 1201-1217
%V 52
%N 4-5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2018018/
%R 10.1051/ro/2018018
%G en
%F RO_2018__52_4-5_1201_0
Amoozad Mahdiraji, Hannan; Razavi Hajiagha, Seyed Hossein; Hashemi, Shide Sadat; Zavadskas, Edmundas Kazimieras. Bi-objective mean–variance method based on Chebyshev inequality bounds for multi-objective stochastic problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1201-1217. doi : 10.1051/ro/2018018. http://archive.numdam.org/articles/10.1051/ro/2018018/

[1] Z. Alizadeh Afrouzy, S.H. Nasseri, I. Mahdavi and M.M. Paydar, A fuzzy stochastic multi-objective optimization model to configure a supply chain considering a new product development. Appl. Math. Model. 40 (2016) 7545–7570. | DOI | MR | Zbl

[2] A. Azaron, K.N. Brown, S.A. Tarim and M. Modarres, A multi-objective stochastic programming approach for supply chain design considering risk. Int. J. Prod. Econ. 116 (2008) 129–138. | DOI

[3] E. Ballestero, Stochastic goal programming: a mean–variance approach. Eur. J. Oper. Res. 131 (2001) 476–481. | DOI | MR | Zbl

[4] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms. John Wiley & Sons, New Jersey (2006). | DOI | MR | Zbl

[5] F. Ben Abdelaziz, Solution approaches for the multi objective stochastic programming. Eur. J. Oper. Res. 216 (2012) 1–16. | DOI | MR | Zbl

[6] F. Ben Abdelaziz, B. Aouni and R. El Fayedh, Multi-objective stochastic programming for portfolio selection. Eur. J. Oper. Res. 177 (2007) 1811–1823. | DOI | Zbl

[7] V. Bhaskar, G.K. Santosh and R.K. Ajay, Applications of Multi objective Optimization in Chemical Engineering. Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India (2013).

[8] R. Caballero, E. Cerda, M. Del Mar, L. Rey, Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. Eur. J. Oper. Res. 158 (2002) 633–648. | DOI | MR | Zbl

[9] N. Chase, M. Rademacher and E. Goodman, A Benchmark Study of Multi-Objective Optimization Methods. Michigan State University, Red Cedar Technology, East Lansing, Michigan (2009).

[10] A. Chen,J. Kim, S. Lee and Y. Kim, Stochastic multi-objective models for network design problem. Expert Syst. Appl. 37 (2010) 1608–1619. | DOI

[11] R.M. Chiulli, Quantitative Analysis: An Introduction. Gordon and Breach Science Publishers, Amsterdam (1999).

[12] J. Climaco, Multi Criteria Analysis. Springer, New York (1997). | MR

[13] J.L. Cohon, Multi Objective Programming and Planning. Dover Publication, New York (2004). | MR | Zbl

[14] B. Contini, A stochastic approach to goal programming. Oper. Res. 16 (1968) 576–586. | DOI | Zbl

[15] O.L. De Weck, Multi Objective Optimization: History and Promise. Massachusetts Institute of Technology, Dept. of Aeronautics & Astronautics, Engineering Systems Division, Cambridge, Massachusetts (2004).

[16] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India (2011).

[17] M. Ekhtiari and K. Ghoseiri, Multi-objective stochastic programming to solve manpower allocation problem. Int. J. Adv. Manuf. Technol. 65 (2013) 183–196. | DOI

[18] P. Eskelinen, K. Miettinen, Trade-off analysis approach for interactive nonlinear multiobjective optimization. OR Spectr. 34 (2011) 803–816. | DOI | MR | Zbl

[19] F.R. Giordano, W.P. Fox and S.B. Horton, A First Course in Mathematical Modeling. Cengage Learning, Boston (2013).

[20] M. Gobbi, F. Levi and G. Mastinu, Multi-objective stochastic optimization of the suspension system of road vehicles. J. Sound Vib. 298 (2006) 1055–1072. | DOI

[21] A. Goicoechea, L. Duckstein and M.M. Fagel, Multiple objectives under uncertainty: an illustrative application of PROTRADE. Water Resour. Res. 15 (1979) 203–210. | DOI

[22] W.J. Gutjahr and A. Pichler, Stochastic multi-objective optimization: a survey on non-scalarizing methods. Ann. Oper. Res. 236 (2016) 475–499. | DOI | MR | Zbl

[23] T.L. Hardy, Multi-Objective Decision-Making Under Uncertainty: Fuzzy Logic Methods. NASA Technical Memorandum, Cleveland, Ohio (1995).

[24] S. Hulsurkar, M.P. Biswal and S.B. Sinha, Fuzzy programming approach to multi-objective stochastic linear programming problems. Fuzzy Sets Syst. 88 (1997) 173–181. | DOI | MR | Zbl

[25] H. Ishibuchi and H. Tanaka, Multi objective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48 (1990) 219–225. | DOI | Zbl

[26] A. Khalkhali, M. Sadafi, J. Rezapour and H. Safikhani, Pareto based multi-objective optimization of solar thermal energy storage using genetic algorithms. Trans. Can. Soc. Mech. Eng. 34 (2010) 463–475. | DOI

[27] P.L. Kunsch and J. Teghem, Nuclear fuel cycle optimization using multi-objective stochastic linear programming. Eur. J. Oper. Res. 31 (1987) 240–249. | DOI

[28] J.-P. Leclercq, Stochastic programming: an interactive multicriteria approach. Eur. J. Oper. Res. 10 (1982) 33–41. | DOI | MR | Zbl

[29] S. Liu and Y. Lin, Grey Information: Theory and Practical Applications. Springer, London (2006).

[30] H.M. Markowitz, Portfolio selection. J. Finance 7 (1952) 77–91.

[31] M. Masmoudi and F. Abdelaziz, Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models. Ann. Oper. Res. 267 (2018) 335–352. | DOI | MR | Zbl

[32] H. Masri, A multiple stochastic goal programming approach for the agent portfolio selection problem. Ann. Oper. Res. 251 (2017) 179–192. | DOI | MR | Zbl

[33] K. Miettinen, Introduction to Multiobjective Optimization: Noninteractive Approaches. Department of Mathematical Information Technology, University of Jyväskylä, Springer, Finland (2012).

[34] M.M. Muñoz and F. Ruiz, ISTMO: an interval reference point-based method for stochastic multiobjective programming problems. Eur. J. Oper. Res. 197 (2009) 25–35. | DOI | MR | Zbl

[35] M.M. Muñoz, M. Luque and F. Ruiz, Interest: a reference-point-based interactive procedure for stochastic multiobjective programming problems. OR Spectr. 32 (2010) 195–210. | DOI | MR | Zbl

[36] R. Nadeau, B. Uril and L.N. Kiss, PROMISE: a DSS for multiple objective stochastic linear programming problems. Ann. Oper. Res. 51 (1994) 45–59. | DOI | Zbl

[37] V. Pareto, Cours d’Économie Politique. Professé à l’Université de Lausanne. Vol. I, edited by F. Roug. Lausanne (1896).

[38] S.H. Razavi Hajiagha, H. Amoozad Mahdiraji and S.S. Hashemi, Multi-objective linear programming with interval coefficients. Kybernetes 42 (2013) 482–496. | DOI | MR | Zbl

[39] S.H. Razavi Hajiagha, H. Amoozad Mahdiraji, E.K. Zavadskas and S.S. Hashemi, Fuzzy multi-objective linear programming based on compromise vikor method. Int. J. Inf. Tech. Decis. Mak. 13 (2014) 679–698. | DOI

[40] M. Sakawa, K. Kato and I. Nishizaki, An interactive fuzzy method for multiobjective stochastic linear programming problems through an expectation model. Eur. J. Oper. Res. 145 (2003) 665–675. | DOI | MR | Zbl

[41] J. Teghem and P. Kunsch, Multi objective decision making under uncertainty: an example jór power systems, in Decision Making with Multiple Objective, edited by Y.Y. Haimes and V. Chankong. Springer-Verlag, Berlin (1985) 443–456. | DOI

[42] J. Teghem, D. Dufrane and M. Thauvoye, Strange: an interactive method for multi-objective linear programming under uncertainty. Eur. J. Oper. Res. 26 (1986) 65–82. | DOI | MR | Zbl

[43] T. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1994). | DOI | Zbl

[44] B. Urli and R. Nadeau, Multi-objective stochastic linear programming with incomplete information: a general methodology, in Stochastic versus Fuzzy Approaches to Multi objective Mathematical Programming Under Uncertainty, edited by R. Slowinski and J. Teghem. Kluwer Academic Publishers, Springer Netherlands (1990) 131–161. | DOI | MR | Zbl

[45] B. Urli and R. Nadeau, PROMISE/scenarios: an interactive method for multi objective stochastic linear programming under partial uncertainty. Eur. J. Oper. Res. 155 (2004) 361–372. | DOI | MR | Zbl

[46] P. Vincke, Multicriteria Decision-Aid. John Wiley, New York (1992).

[47] X. Zhang, G.H. Huang, C.W. Chen, Z. Liu and Q. Lin, A fuzzy-robust stochastic multi objective programming approach for petroleum waste management planning. Appl. Math. Model. 34 (2010) 2778–2788. | DOI | MR | Zbl

Cité par Sources :