The st-bond polytope of a graph is the convex hull of the incidence vectors of its st-bonds, where an st-bond is a minimal st-cut. In this paper, we provide a linear description of the st-bond polytope on series-parallel graphs. We also show that the st-bond polytope is the intersection of the st-cut dominant and the bond polytope.
Accepté le :
DOI : 10.1051/ro/2018035
Mots-clés : Bond, minimal st-cut, st-bond polytope, series-parallel graph
@article{RO_2018__52_3_923_0, author = {Grappe, Roland and Lacroix, Mathieu}, title = {The st-bond polytope on series-parallel graphs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {923--934}, publisher = {EDP-Sciences}, volume = {52}, number = {3}, year = {2018}, doi = {10.1051/ro/2018035}, zbl = {1405.90112}, mrnumber = {3868452}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2018035/} }
TY - JOUR AU - Grappe, Roland AU - Lacroix, Mathieu TI - The st-bond polytope on series-parallel graphs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2018 SP - 923 EP - 934 VL - 52 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2018035/ DO - 10.1051/ro/2018035 LA - en ID - RO_2018__52_3_923_0 ER -
%0 Journal Article %A Grappe, Roland %A Lacroix, Mathieu %T The st-bond polytope on series-parallel graphs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2018 %P 923-934 %V 52 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2018035/ %R 10.1051/ro/2018035 %G en %F RO_2018__52_3_923_0
Grappe, Roland; Lacroix, Mathieu. The st-bond polytope on series-parallel graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 3, pp. 923-934. doi : 10.1051/ro/2018035. http://archive.numdam.org/articles/10.1051/ro/2018035/
[1] Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebr. Discrete Methods 6 (1985) 466–486. | DOI | MR | Zbl
,[2] Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89 (1998) 1–44. | DOI | MR | Zbl
,[3] On the cut polytope. Math. Program. 36 (1986) 157–73. | DOI | MR | Zbl
and ,[4] Lexicographical polytopes. Discrete Appl. Math. 240 (2018) 3–7. | DOI | MR | Zbl
, , and ,[5] Circuit and bond polytopes on series-parallel graphs. Discrete Optim. 17 (2015) 55–68. | DOI | MR | Zbl
, , , and ,[6] The concavity and intersection properties for integral polyhedra, in Combinatorics 79. Part I. Vol 8 of Ann. Discrete Math. North-Holland, Amsterdam (1980) 221–228. | DOI | MR | Zbl
,[7] When the cut condition is enough: a complete characterization for multiflow problems in series-parallel networks, in Proc. of the 44th Symposium on Theory of Computing STOC’12 (2012) 19–26. | DOI | MR | Zbl
, and ,[8] Topology of series-parallel networks. J. Math. Anal. Appl. 10 (1965) 303–318. | DOI | MR | Zbl
,[9] Submodular functions, matroids and certain polyhedra, in Combinatorial Structures and their Applications. (1970) 69–87. | MR | Zbl
,[10] Parallel recognition of series-parallel graphs. Inf. Comput. 98 (1992) 41–55. | DOI | MR | Zbl
,[11] Maximal flow through a network. Can. J. Math. 8 (1956) 399–404. | DOI | MR | Zbl
and ,[12] Solution d’une question particuliere du calcul des inégalités. Nouveau Bulletin des Sciences par la Société philomatique de Paris (1826) 99–100.
,[13] Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979). | MR | Zbl
and ,[14] The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5 (1976) 704–714. | DOI | MR | Zbl
, and ,[15] Finding a maximum cut of planar graph in polynomial time. SIAM J. Comput. 4 (1975) 221–225. | DOI | MR | Zbl
,[16] Sur le problème des courbes gauches en topologie. Fundam. Math. 15 (1930) 271–283. | DOI | JFM
,[17] Combinatorial Optimization. Springer-Verlag, Berlin, Heidelberg (2003). | Zbl
,[18] On the dominant of the s-t-cut polytope: vertices, facets, and adjacency. Math. Program. 124 (2010) 441–454. | DOI | MR | Zbl
and ,Cité par Sources :