The st-bond polytope on series-parallel graphs
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 3, pp. 923-934.

The st-bond polytope of a graph is the convex hull of the incidence vectors of its st-bonds, where an st-bond is a minimal st-cut. In this paper, we provide a linear description of the st-bond polytope on series-parallel graphs. We also show that the st-bond polytope is the intersection of the st-cut dominant and the bond polytope.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2018035
Classification : 90C27, 90C35, 90C57
Mots-clés : Bond, minimal st-cut, st-bond polytope, series-parallel graph
Grappe, Roland 1 ; Lacroix, Mathieu 1

1
@article{RO_2018__52_3_923_0,
     author = {Grappe, Roland and Lacroix, Mathieu},
     title = {The st-bond polytope on series-parallel graphs},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {923--934},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/ro/2018035},
     zbl = {1405.90112},
     mrnumber = {3868452},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2018035/}
}
TY  - JOUR
AU  - Grappe, Roland
AU  - Lacroix, Mathieu
TI  - The st-bond polytope on series-parallel graphs
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2018
SP  - 923
EP  - 934
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2018035/
DO  - 10.1051/ro/2018035
LA  - en
ID  - RO_2018__52_3_923_0
ER  - 
%0 Journal Article
%A Grappe, Roland
%A Lacroix, Mathieu
%T The st-bond polytope on series-parallel graphs
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2018
%P 923-934
%V 52
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2018035/
%R 10.1051/ro/2018035
%G en
%F RO_2018__52_3_923_0
Grappe, Roland; Lacroix, Mathieu. The st-bond polytope on series-parallel graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 3, pp. 923-934. doi : 10.1051/ro/2018035. http://archive.numdam.org/articles/10.1051/ro/2018035/

[1] E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebr. Discrete Methods 6 (1985) 466–486. | DOI | MR | Zbl

[2] E. Balas, Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89 (1998) 1–44. | DOI | MR | Zbl

[3] F. Barahona and A.R. Mahjoub, On the cut polytope. Math. Program. 36 (1986) 157–73. | DOI | MR | Zbl

[4] M. Barbato, R. Grappe, M. Lacroix and C. Pira, Lexicographical polytopes. Discrete Appl. Math. 240 (2018) 3–7. | DOI | MR | Zbl

[5] S. Borne, P. Fouilhoux, R. Grappe, M. Lacroix and P. Pesneau, Circuit and bond polytopes on series-parallel graphs. Discrete Optim. 17 (2015) 55–68. | DOI | MR | Zbl

[6] G. Calvillo, The concavity and intersection properties for integral polyhedra, in Combinatorics 79. Part I. Vol 8 of Ann. Discrete Math. North-Holland, Amsterdam (1980) 221–228. | DOI | MR | Zbl

[7] A. Chakrabarti, L. Fleischer and C. Weibel, When the cut condition is enough: a complete characterization for multiflow problems in series-parallel networks, in Proc. of the 44th Symposium on Theory of Computing STOC’12 (2012) 19–26. | DOI | MR | Zbl

[8] R.J. Duffin, Topology of series-parallel networks. J. Math. Anal. Appl. 10 (1965) 303–318. | DOI | MR | Zbl

[9] J. Edmonds, Submodular functions, matroids and certain polyhedra, in Combinatorial Structures and their Applications. (1970) 69–87. | MR | Zbl

[10] D. Eppstein, Parallel recognition of series-parallel graphs. Inf. Comput. 98 (1992) 41–55. | DOI | MR | Zbl

[11] L.R. Ford and D.R. Fulkerson, Maximal flow through a network. Can. J. Math. 8 (1956) 399–404. | DOI | MR | Zbl

[12] J.B.J. Fourier, Solution d’une question particuliere du calcul des inégalités. Nouveau Bulletin des Sciences par la Société philomatique de Paris (1826) 99–100.

[13] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979). | MR | Zbl

[14] M.R. Garey, D.S. Johnson and R.E. Tarjan, The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5 (1976) 704–714. | DOI | MR | Zbl

[15] F.O. Hadlock, Finding a maximum cut of planar graph in polynomial time. SIAM J. Comput. 4 (1975) 221–225. | DOI | MR | Zbl

[16] K. Kuratowski, Sur le problème des courbes gauches en topologie. Fundam. Math. 15 (1930) 271–283. | DOI | JFM

[17] A. Schrijver, Combinatorial Optimization. Springer-Verlag, Berlin, Heidelberg (2003). | Zbl

[18] M. Skutella and A. Weber, On the dominant of the s-t-cut polytope: vertices, facets, and adjacency. Math. Program. 124 (2010) 441–454. | DOI | MR | Zbl

Cité par Sources :