A novel approach to stochastic input-output modeling
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 4, pp. 1155-1169.

An approach to input-output modeling is proposed in which the inner consumption and the final demand are random. The main aspects of its novelty are: (a) the economy is allowed to be nonproductive with a certain probability ϰ ∈ [0,1); (b) the economy can be open, which means that import of the corresponding commodities is included in the model. In this approach, the production-and-import plan is set to be feasible if the probability of not satisfying the final demand does not exceed a certain value α ∈ (0,1). Then the problem of finding optimal plans consists in minimizing the production and import costs on the set of feasible plans. The solvability of this problem and properties of the solutions are studied and a concrete example of the stochastic input-output model is analyzed.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2018046
Classification : 91B70, 91B66
Mots-clés : Leontief model, stochastic model, optimization, cost function, open economy
Kozicka, Marta 1

1
@article{RO_2019__53_4_1155_0,
     author = {Kozicka, Marta},
     title = {A novel approach to stochastic input-output modeling},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1155--1169},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/ro/2018046},
     zbl = {1427.91182},
     mrnumber = {3986367},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2018046/}
}
TY  - JOUR
AU  - Kozicka, Marta
TI  - A novel approach to stochastic input-output modeling
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 1155
EP  - 1169
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2018046/
DO  - 10.1051/ro/2018046
LA  - en
ID  - RO_2019__53_4_1155_0
ER  - 
%0 Journal Article
%A Kozicka, Marta
%T A novel approach to stochastic input-output modeling
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 1155-1169
%V 53
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2018046/
%R 10.1051/ro/2018046
%G en
%F RO_2019__53_4_1155_0
Kozicka, Marta. A novel approach to stochastic input-output modeling. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 4, pp. 1155-1169. doi : 10.1051/ro/2018046. http://archive.numdam.org/articles/10.1051/ro/2018046/

[1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Revised reprint of the 1979 original. Vol. 9 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM) (1994). | Zbl

[2] R.G. Bapat and M.I. Beg, Order statistics for nonidenticall distributed variables and permanents. Sankhyā: The Indian J. Stat. Series A 51 (1989) 79–93. | MR | Zbl

[3] G.R. Belitskii and Y.I. Lyubitch, Matrix norms and their applications. Translated from the Russian by A. Iacob. In Vol. 36 of Operator Theory: Advances and Applications. Birkhäuser Verlag (1988). | MR | Zbl

[4] A. Bharucha-Reid and M. Sambandham, Random Polynomials. Academic Press (1986). | MR | Zbl

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press (2004). | DOI | MR | Zbl

[6] R. Durrett, Probability: Theory and Examples. Wadsworth & Brooks/Cole (1991). | MR | Zbl

[7] A. Ebiefung and M. Kostreva, The generalized Leontief input-output model and its application to the choice of new technology. Ann. Oper. Res. 44 (1993) 161–172. | DOI | MR | Zbl

[8] A. Goicoechea and D.R. Hansen, An input-output model with stochastic parameters for economic analysis. A IIE Trans. 10 (1978) 285–291.

[9] H. Gurgul, Stochastic input-output modeling. Ekon. Mened. 2 (2007) 57–70.

[10] H. Kogelschatz, On the solution of stochastic input-output models. University of Heidelberg. Discussion Paper Series No. 447 (2007).

[11] S. Lahiri, A note on the underestimation and overestimation in stochastic input-output models. Econom. Lett. 13 (1983) 361–366. | DOI | MR | Zbl

[12] S. Lahiri and S. Satchel, Underestimation and overestimation of the Leontief inverse revisited. Econom. Lett. 18 (1985) 181–186. | DOI | MR | Zbl

[13] S. Lahiri and S. Satchel, Properties of the expected value of the Leontief inverse: some further results. Math. Soc. Sci. 11 (1986) 69–82. | DOI | Zbl

[14] W. Leontief, Quantitative Input-Output Relations in the Economic System of the United States. Rev. Econ. Stat. 18 (1936) 105–125. | DOI

[15] W. Leontief, Input-Output Economics. 2nd edition. Oxford University Press (1986).

[16] X. Ming, Development of the physical input monetary output model for understanding material flows within ecological-economic systems. JoRE 1 (2010) 123–134.

[17] C. Oliveira, D. Coelho and C.H. Antunes, Coupling input-output analysis with multiobjective linear programming models for the study of economy-energy-environment-social (E3S) trade-offs: a review. Ann. Oper. Res. 247 (2016) 471–502. | DOI | MR | Zbl

[18] J.M. Rueda-Cantuche, E. Dietzenbacher, E. Fernández and A.F. Amores, The bias of the multiplier matrix when supply and use tables are stochastic. Econ. Syst. Res. 25 (2013) 435–448. | DOI

[19] A. Simonovits, A note on the underestimations and overestimation of the Leontief matrix. Econometrica 43 (1975) 493–498. | DOI | MR | Zbl

[20] S. Suh and Sh Kagawa, Industrial ecology and input-output economics: an introduction. Econ. Syst. Res. 17 (2005) 349–364. | DOI

[21] U. Temurshoev, Uncertainty treatment in input-output analysis. Universidad Loyola Andaluca. Universidad Loyola Andaluca. Documentos de Trabajo No. 4 (2015).

[22] T. Ten Raa, Linear analysis of competitive economies. LSE Handbooks in Economics. Harvester Wheatsheaf (1995).

[23] T. Ten Raa and M.F.J. Steel, Revised stochastic analysis of an input-output model. Reg. Sci. Urban Econ. 24 (1994) 361–371. | DOI

[24] G.R. West, A stochastic analysis of an input-output model. Econometrica 54 (1986) 363–374. | DOI | Zbl

Cité par Sources :