Second-order sensitivity analysis for parametric equilibrium problems in set-valued optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 4, pp. 1245-1260.

In the paper, we first establish relationships between second-order contingent derivatives of a given set-valued map and that of the weak perturbation map. Then, these results are applied to sensitivity analysis for parametric equilibrium problems in set-valued optimization.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2018080
Classification : 46G05, 49Q12, 54C60, 90C31
Mots-clés : Sensitivity analysis, weak perturbation map, directional metric subregularity, contingent derivative, set-valued map
Anh, Nguyen Le Hoang 1

1
@article{RO_2019__53_4_1245_0,
     author = {Anh, Nguyen Le Hoang},
     title = {Second-order sensitivity analysis for parametric equilibrium problems in set-valued optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1245--1260},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/ro/2018080},
     mrnumber = {3986373},
     zbl = {1428.90164},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2018080/}
}
TY  - JOUR
AU  - Anh, Nguyen Le Hoang
TI  - Second-order sensitivity analysis for parametric equilibrium problems in set-valued optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 1245
EP  - 1260
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2018080/
DO  - 10.1051/ro/2018080
LA  - en
ID  - RO_2019__53_4_1245_0
ER  - 
%0 Journal Article
%A Anh, Nguyen Le Hoang
%T Second-order sensitivity analysis for parametric equilibrium problems in set-valued optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 1245-1260
%V 53
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2018080/
%R 10.1051/ro/2018080
%G en
%F RO_2019__53_4_1245_0
Anh, Nguyen Le Hoang. Second-order sensitivity analysis for parametric equilibrium problems in set-valued optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 4, pp. 1245-1260. doi : 10.1051/ro/2018080. http://archive.numdam.org/articles/10.1051/ro/2018080/

N.L.H. Anh, Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality. Positivity 18 (2014) 449–473. | DOI | MR | Zbl

N.L.H. Anh, Higher-order optimality conditions for strict and weak efficient solutions in set-valued optimization. Positivity 20 (2016) 499–514. | DOI | MR | Zbl

N.L.H. Anh and P.Q. Khanh, Variational sets of perturbation maps and applications to sensitivity analysis for constrained vector optimization. J. Optim. Theory Appl. 158 (2013) 363–384. | DOI | MR | Zbl

N.L.H. Anh and P.Q. Khanh, Calculus and applications of Studniarski’s derivatives to sensitivity and implicit function theorems. Control Cybern. 43 (2014) 33–57. | MR | Zbl

J.P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhauser, Boston (1990). | MR | Zbl

C.R. Chen, S.J. Li and K.L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems. J. Global Optim. 45 (2009) 309–318. | DOI | MR | Zbl

T.D. Chuong, Derivatives of the efficient point multifunction in parametric vector optimization problems. J. Optim. Theory Appl. 156 (2013) 247–265. | DOI | MR | Zbl

T.D. Chuong and J.-C. Yao, Generalized Clarke epiderivatives of parametric vector optimization problems. J. Optim. Theory Appl. 146 (2010) 77–94. | DOI | MR | Zbl

R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21 (1990) 265–287. | DOI | MR | Zbl

H.T.H. Diem, P.Q. Khanh and L.T. Tung, On higher-order sensitivity analysis in nonsmooth vector optimization. J. Optim. Theory Appl. 162 (2014) 463–488. | DOI | MR | Zbl

X.P. Ding and J.Y. Park, Generalized vector equilibrium problems in generalized convex spaces. J. Optim. Theory Appl. 120 (2004) 327–353. | DOI | MR | Zbl

A.V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York, NY (1983). | MR | Zbl

H. Gfrerer, On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21 (2013) 151–176. | DOI | MR | Zbl

X.H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems. J. Optim. Theory Appl. 139 (2008) 35–46. | DOI | MR | Zbl

A.D. Ioffe, Metric regularity – A survey. Part I. Theory. J. Aust. Math. Soc. 101 (2016) 188–243. | DOI | MR | Zbl

A.D. Ioffe, Metric regularity – A survey. Part II. Application. J. Aust. Math. Soc. 101 (2016) 376–417. | DOI | MR | Zbl

K. Kimura and J.C. Yao, Semicontinuity of solution mappings of parametric generalized vector equilibrium problems. J. Optim. Theory Appl. 138 (2008) 429–443. | DOI | MR | Zbl

P.Q. Khanh and N.M. Tung, Optimality conditions and duality for nonsmooth vector equilibrium problems with constraints. Optimization 64 (2015) 1547–1575. | DOI | MR | Zbl

S.J. Li and M.H. Li, Sensitivity analysis of parametric weak vecctor equilibrium problems. J. Math. Anal. Appl. 380 (2011) 354–362. | DOI | MR | Zbl

S.J. Li, K.L. Teo, X.Q. Yang and S.Y. Wu, Gap functions and existence of solutions to generalized vector quasi-equilibrium problems. J. Global Optim. 34 (2006) 427–440. | DOI | MR | Zbl

D.T. Luc, Theory of vector optimization. In Vol. 319 of Lecture Notes in Econom. and Math. Systems. Springer, Berlin (1989). | DOI | MR | Zbl

D.T. Luc, M. Soleimani-Damaneh and M. Zamani, Semi-differentiability of the marginal mapping in vector optimization. SIAM J. Optim. 28 (2018) 1255–1281. | DOI | MR | Zbl

H. Mirzaee and M. Soleimani-Damaneh, Derivatives of set-valued maps and gap functions for vector equilibrium problems. Set-Valued Var. Anal. 22 (2014) 673–689. | DOI | MR | Zbl

B.S. Mordukhovich, Variational analysis and generalized differentiation. In: Basic Theory. Springer, Berlin I (2006). | MR | Zbl

B.S. Mordukhovich, Variational analysis and generalized differentiation. In: Applications. Springer, Berlin II (2006). | MR | Zbl

J.P. Penot, Differentiability of relations and differential stability of perturbed optimization problems. SIAM J. Control Optim. 22 (1984) 529–551. | DOI | MR | Zbl

S.M. Robinson, Stability theory for systems of inequalities, Part II. Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497–513. | DOI | MR | Zbl

R.T. Rockafellar, Proto-differentiability of set-valued mapping and its applications in optimization. Ann. Inst. Henri Poincaré 6 (1989) 449–482. | DOI | Numdam | MR | Zbl

R.T. Rockafellar and R.J.B. Wets, Variational Analysis, 3rd edition. Springer, Berlin (2009).

P.H. Sach, L.A. Tuan and G.M. Lee, Sensitivity results for a general class of generalized vector quasi-equilibrium problems with set-valued maps. Nonlinear Anal. 71 (2009) 571–586. | DOI | MR | Zbl

D.S. Shi, Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70 (1991) 385–396. | DOI | MR | Zbl

D.S. Shi, Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77 (1993) 145–159. | DOI | MR | Zbl

M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 5 (1986) 1044–1049. | DOI | MR | Zbl

X.K. Sun and S.J. Li, Lower Studniarski derivative of the perturbation map in parametrized vector optimization. Optim. Lett. 5 (2011) 601–614. | DOI | MR | Zbl

T. Tanino, Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56 (1988) 479–499. | DOI | MR | Zbl

T. Tanino, Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26 (1988) 521–536. | DOI | MR | Zbl

Q.L. Wang and S.J. Li, Sensitivity and stability for the second-order contingent derivative of the proper perturbation map in vector optimization. Optim. Lett. 6 (2012) 731–748. | DOI | MR | Zbl

Cité par Sources :