Trees with equal Roman {2}-domination number and independent Roman {2}-domination number
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 389-400.

A Roman {2}-dominating function ( R 2 D F ) on a graph G = ( V , E ) is a function f : V { 0 , 1 , 2 } satisfying the condition that every vertex u for which f ( u ) = 0 is adjacent to either at least one vertex v with f ( v ) = 2 or two vertices v 1 v 2 with f ( v 1 ) = f ( v 2 ) = 1 . The weight of an R { 2 } DF f is the value w ( f ) = u v f ( u ) . The minimum weight of an R { 2 } DF on a graph G is called the Roman { 2 } -domination number γ { R 2 } ( G ) of G . An R { 2 } DF f is called an independent Roman { 2 } -dominating function ( I R { 2 } D F ) if the set of vertices with positive weight under f is independent. The minimum weight of an I R { 2 } D F on a graph G is called the independent Roman { 2 } -domination number i { R 2 } ( G ) of G . In this paper, we answer two questions posed by Rahmouni and Chellali.

DOI : 10.1051/ro/2018116
Classification : 05C69
Mots-clés : Roman {2}-domination, independent Roman {2}-domination, tree, algorithm
Wu, Pu 1 ; Li, Zepeng 1 ; Shao, Zehui 1 ; Sheikholeslami, Seyed Mahmoud 1

1
@article{RO_2019__53_2_389_0,
     author = {Wu, Pu and Li, Zepeng and Shao, Zehui and Sheikholeslami, Seyed Mahmoud},
     title = {Trees with equal {Roman} {2}-domination number and independent {Roman} {2}-domination number},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {389--400},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/ro/2018116},
     zbl = {1426.05136},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2018116/}
}
TY  - JOUR
AU  - Wu, Pu
AU  - Li, Zepeng
AU  - Shao, Zehui
AU  - Sheikholeslami, Seyed Mahmoud
TI  - Trees with equal Roman {2}-domination number and independent Roman {2}-domination number
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 389
EP  - 400
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2018116/
DO  - 10.1051/ro/2018116
LA  - en
ID  - RO_2019__53_2_389_0
ER  - 
%0 Journal Article
%A Wu, Pu
%A Li, Zepeng
%A Shao, Zehui
%A Sheikholeslami, Seyed Mahmoud
%T Trees with equal Roman {2}-domination number and independent Roman {2}-domination number
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 389-400
%V 53
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2018116/
%R 10.1051/ro/2018116
%G en
%F RO_2019__53_2_389_0
Wu, Pu; Li, Zepeng; Shao, Zehui; Sheikholeslami, Seyed Mahmoud. Trees with equal Roman {2}-domination number and independent Roman {2}-domination number. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 389-400. doi : 10.1051/ro/2018116. http://archive.numdam.org/articles/10.1051/ro/2018116/

J.D. Alvarado, S. Dantas and D. Rautenbach, Strong equality of Roman and weak Roman domination in trees. Dis. Appl. Math. 208 (2016) 19–26. | Zbl

M.P. Álvarez-Ruiz, I. González Yero, T. Mediavilla-Gradolph, S.M. Sheikholeslami and J.C. Valenzuela, On the strong Roman domination number of graphs. Dis. Appl. Math. 231 (2017) 44–59. | Zbl

M. Atapour, S.M. Sheikholeslami and L. Volkmann, Global Roman domination in trees. Graphs Comb. 31 (2015) 813–825. | Zbl

E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination. SIAM J. Dis. Math. 23 (2009) 1575–1586. | Zbl

M. Chellali, T.W. Haynes and S.T. Hedetniemi, Lower bounds on the Roman and independent Roman domination numbers. Appl. Anal. Disc. Math. 10 (2016) 65–72. | Zbl

M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. Macrae, Roman {2}-domination. Dis. Appl. Math. 204 (2016) 22–28. | Zbl

E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs. Dis. Math. 278 (2004) 11–22. | Zbl

O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, On the Roman domination number of a graph. Dis. Math. 309 (2009) 3447–3451. | Zbl

T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York, NY (1998). | Zbl

M.A. Henning and S.T. Hedetniemi, Defending the Roman empire – a new strategy. Dis. Math. 266 (2003) 239–251. | Zbl

M.A. Henning and W.F. Klostermeyer, Italian domination in trees. Dis. Appl. Math. 217 (2017) 557–564. | Zbl

O. Ore, Theory of Graphs. American Mathematical Society, Providence, RI (1967). | Zbl

A. Rahmouni and M. Chellali, Independent Roman {2}-domination in graphs. Dis. Appl. Math. 236 (2018) 408–414. | Zbl

Z. Shao, S. Klavžar, Z. Li, P. Wu and J. Xu, On the signed Roman k-domination: complexity and thin torus graphs. Dis. Appl. Math. 233 (2017) 175–186. | Zbl

Z. Shao, S.M. Sheikholeslami, M. Soroudi, L. Volkmann and X. Liu, On the co-Roman domination in graphs. Discuss. Math. Graph Theory 39 (2018) 455–472. | Zbl

Cité par Sources :