A heuristic for the minimum cost chromatic partition problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 3, pp. 845-871.

The graph coloring problem consists in coloring the vertices of a graph G=(V, E) with a minimum number of colors, such as that any two adjacent vertices receive different colors. The minimum cost chromatic partition problem (MCCPP) is an extension of the graph coloring problem in which there are costs associated with the colors and one seeks a vertex coloring minimizing the sum of the costs of the colors used in each vertex. The problem finds applications in VLSI design and in some scheduling problems modeled on interval graphs. We propose a trajectory search heuristic using local search, path-relinking, and perturbations for solving MCCPP and discuss computational results.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2019037
Classification : 90C27, 68R10
Mots-clés : Minimum cost chromatic partition problem, graph coloring problem, metaheuristics, trajectory search heuristic, path-relinking
@article{RO_2020__54_3_845_0,
     author = {Ribeiro, Celso C. and dos Santos, Philippe L. F.},
     title = {A heuristic for the minimum cost chromatic partition problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {845--871},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/ro/2019037},
     mrnumber = {4078189},
     zbl = {1443.90302},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2019037/}
}
TY  - JOUR
AU  - Ribeiro, Celso C.
AU  - dos Santos, Philippe L. F.
TI  - A heuristic for the minimum cost chromatic partition problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2020
SP  - 845
EP  - 871
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2019037/
DO  - 10.1051/ro/2019037
LA  - en
ID  - RO_2020__54_3_845_0
ER  - 
%0 Journal Article
%A Ribeiro, Celso C.
%A dos Santos, Philippe L. F.
%T A heuristic for the minimum cost chromatic partition problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2020
%P 845-871
%V 54
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2019037/
%R 10.1051/ro/2019037
%G en
%F RO_2020__54_3_845_0
Ribeiro, Celso C.; dos Santos, Philippe L. F. A heuristic for the minimum cost chromatic partition problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 3, pp. 845-871. doi : 10.1051/ro/2019037. http://archive.numdam.org/articles/10.1051/ro/2019037/

[1] R.M. Aiex, M.G.C. Resende and C.C. Ribeiro, Probability distribution of solution time in GRASP: An experimental investigation. J. Heurist. 8 (2002) 343–373. | DOI | Zbl

[2] R.M. Aiex, M.G.C. Resende and C.C. Ribeiro, TTTPLOTS: A Perl program to create time-to-target plots. Optim. Lett. 1 (2007) 355–366. | DOI | MR | Zbl

[3] C. Avanthay, A. Hertz and N. Zufferey, A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151 (2003) 379–388. | DOI | MR | Zbl

[4] M.P. Bastos and C.C. Ribeiro, Reactive tabu search with path-relinking for the Steiner problem in graphs, In: Essays and Surveys in Metaheuristics edited by C.C. Ribeiro and P. Hansen. Springer, Boston (2002) 39–58. | DOI | MR | Zbl

[5] H. Bouziri and M. Jouini, A tabu search approach for the sum coloring problem. Electron. Notes Discrete Math. 36 (2010) 915–922. | DOI | Zbl

[6] M. Chiarandini, I. Dumitrescu and T. Stützle, Stochastic local search algorithms for the graph colouring problem, In: Handbook of Approximation Algorithms and Metaheuristics, edited by T.F. Gonzalez Computer & Information Science Series. Chapman & Hall, Boca Raton (2007) 63.1–63.17.

[7] P. Galinier and J.-K. Hao, Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3 (1999) 379–397. | DOI | MR | Zbl

[8] F. Glover, Tabu search and adaptive memory programming – Advances, applications and challenges, In: Interfaces in Computer Science and Operations Research: Advances in Metaheuristics, Optimization, and Stochastic Modeling Technologies, edited by R.S. Barr, R.V. Helgason and J.L. Kennington, Springer, Boston (1997) 1–75. | Zbl

[9] J.-P. Hamiez and J.-K. Hao, Scatter search for graph coloring, In: Artificial Evolution, edited by P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton and M. Schoenauer. Vol. 2310 of Lecture Notes in Computer Science. Springer, Berlin (2002) 168–179. | DOI | Zbl

[10] A. Helmar and M. Chiarandini, A local search heuristic for chromatic sum, In: Proceedings of the 9th Metaheuristics International Conference, Udine, edited by L.D. Gaspero, A. Schaerf and T. Stützle (2011) 161–170.

[11] A. Hertz and D. De Werra, Using tabu search techniques for graph coloring. Computing 39 (1987) 345–351. | DOI | MR | Zbl

[12] S.C. Ho and M. Gendreau, Path relinking for the vehicle routing problem. J. Heurist. 12 (2006) 55–72. | DOI | Zbl

[13] H. Hoos and T. Stützle, Evaluation of Las Vegas algorithms – Pitfalls and remedies, In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, edited by G. Cooper and S. Moral (1998) 238–245.

[14] R. Interian and C.C. Ribeiro, A GRASP heuristic using path-relinking and restarts for the Steiner traveling salesman problem. Int. Trans. Oper. Res. 24 (2017) 1307–1323. | DOI | MR | Zbl

[15] K. Jansen, Complexity results for the optimum cost chromatic partition problem. Universität Trier, Mathematik/Informatik (1996) 96–41.

[16] K. Jansen, The optimum cost chromatic partition problem, In: Algorithms and Complexity, edited by G. Bongiovanni, D. Bovet and G. Di Battista Vol. 1203 of Lecture Notes in Computer Science. Springer, Berlin (1997) 25–36. | DOI | MR

[17] K. Jansen, Approximation results for the optimum cost chromatic partition problem. J. Algorithms 34 (2000) 54–89. | DOI | MR | Zbl

[18] Y. Jin, J.-P. Hamiez and J.-K. Hao, Algorithms for the minimum sum coloring problem: A review. Artif. Intell. Rev. 47 (2017) 367–394. | DOI

[19] L.G. Kroon, A. Sen, H. Deng and A. Roy, The optimal cost chromatic partition problem for trees and interval graphs, In: Graph-Theoretic Concepts in Computer Science, edited by F. D’Amore, P. Franciosa and A. Marchetti-Spaccamela Vol. 1197 of Lecture Notes in Computer Science. Springer, Berlin (1997) 279–292. | DOI | MR

[20] E. Kubicka and A.J. Schwenk, An introduction to chromatic sums. In Proceedings of the ACM Seventeenth Annual Computer Science Conference. ACM Press (1989) 39–45. | DOI

[21] X. Lai and J.-K. Hao, Path relinking for the fixed spectrum frequency assignment problem. Expert Syst. Appl. 42 (2015) 4755–4767. | DOI

[22] F.T. Leighton, A graph coloring algorithm for large scheduling problems. J. Res. Nat. Bureau Stand. 84 (1979) 489–506. | DOI | MR | Zbl

[23] E. Malaguti, M. Monaci and P. Toth, Models and heuristic algorithms for a weighted vertex coloring problem. J. Heurist. 15 (2009) 503–526. | DOI | Zbl

[24] E. Malaguti and P. Toth, A survey on vertex coloring problems. Int. Trans. Oper. Res. 17 (2010) 1–34. | DOI | MR | Zbl

[25] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Boston (1980).

[26] M.G.C. Resende and C.C. Ribeiro, A GRASP with path-relinking for private virtual circuit routing. Networks 41 (2003) 104–114. | DOI | MR | Zbl

[27] M.G.C. Resende and C.C. Ribeiro, Greedy randomized adaptive search procedures: Advances and applications, In: Handbook of metaheuristics, edited by M. Gendreau and J.-Y. Potvin, 2nd edition. Springer, New York (2010) 293–319.

[28] M.G.C. Resende and C.C. Ribeiro, Restart strategies for GRASP with path-relinking heuristics. Optim. Lett. 5 (2011) 467–478. | DOI | MR | Zbl

[29] M.G.C. Resende and C.C. Ribeiro, Optimization by GRASP: Greedy Randomized Adaptive Search Procedures. Springer, Boston (2016). | DOI | MR

[30] M.G.C. Resende, C.C. Ribeiro, F. Glover and R. Martí, Scatter search and path-relinking: Fundamentals, advances, and applications, In: Handbook of metaheuristics, edited by M. Gendreau and J.-Y. Potvin, 2nd edition. Springer, New York (2010) 87–107. | DOI

[31] C.C. Ribeiro and M.G.C. Resende, Path-relinking intensification methods for stochastic local search algorithms. J. Heurist. 18 (2012) 193–214. | DOI

[32] C.C. Ribeiro and D.S. Vianna, A hybrid genetic algorithm for the phylogeny problem using path-relinking as a progressive crossover strategy. Int. Trans. Oper. Res. 16 (2009) 641–657. | DOI

[33] A. Sen, H. Deng and S. Guha, On a graph partition problem with application to VLSI layout. Info. Proc. Lett. 43 (1992) 87–94. | DOI | MR | Zbl

[34] T. Stützle and H.H. Hoos, Analyzing the run-time behaviour of iterated local search for the tsp. In: III Metaheuristics International Conference, Angra dos Reis (1999) 449–453. | Zbl

[35] K. Supowit, Finding a maximum planar subset of a set of nets in a channel. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 6 (1987) 93–94. | DOI

Cité par Sources :