Symmetric duality results for second-order nondifferentiable multiobjective programming problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 539-558.

In this article, we study the existence of Gf-bonvex/Gf-pseudo-bonvex functions and construct various nontrivial numerical examples for the existence of such type of functions. Furthermore, we formulate Mond-Weir type second-order nondifferentiable multiobjective programming problem and give a nontrivial concrete example which justify weak duality theorem present in the paper. Next, we prove appropriate duality relations under aforesaid assumptions.

DOI : 10.1051/ro/2019044
Classification : 90C26, 90C3, 90C32, 90C46
Mots-clés : Symmetric duality, nondifferentiable, support function, Gf -bonvexity/Gf -pseudo-bonvexity, Mond-Weir type model
Dubey, Ramu 1 ; Mishra, Vishnu Narayan 1

1
@article{RO_2019__53_2_539_0,
     author = {Dubey, Ramu and Mishra, Vishnu Narayan},
     title = {Symmetric duality results for second-order nondifferentiable multiobjective programming problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {539--558},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/ro/2019044},
     zbl = {1423.90199},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2019044/}
}
TY  - JOUR
AU  - Dubey, Ramu
AU  - Mishra, Vishnu Narayan
TI  - Symmetric duality results for second-order nondifferentiable multiobjective programming problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2019
SP  - 539
EP  - 558
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2019044/
DO  - 10.1051/ro/2019044
LA  - en
ID  - RO_2019__53_2_539_0
ER  - 
%0 Journal Article
%A Dubey, Ramu
%A Mishra, Vishnu Narayan
%T Symmetric duality results for second-order nondifferentiable multiobjective programming problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2019
%P 539-558
%V 53
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2019044/
%R 10.1051/ro/2019044
%G en
%F RO_2019__53_2_539_0
Dubey, Ramu; Mishra, Vishnu Narayan. Symmetric duality results for second-order nondifferentiable multiobjective programming problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 2, pp. 539-558. doi : 10.1051/ro/2019044. https://www.numdam.org/articles/10.1051/ro/2019044/

[1] T. Antczak , New optimality conditions and duality results of G-type in differentiable mathematical programming. Nonlinear Anal. 66 (2007) 1617–1632. | Zbl

[2] T. Antczak , On G-invex multiobjective programming. Part I. Optimality. J. Global Optim. 43 (2009) 97–109. | Zbl

[3] D. Bhatia and P.K. Garg , (V, ρ) invexity and non-smooth multiobjective programming. RAIRO: OR 32 (1998) 399–414.

[4] X.H. Chen , Higher-order symmetric duality in nondifferentiable multiobjective programming problems. J. Math. Anal. Appl. 290 (2004) 423–435. | Zbl

[5] R. Dubey and S.K. Gupta , Duality for a nondifferentiable multiobjective higher-order symmetric fractional programming problems with cone constraints. J. Non-linear Anal. Optim. 7 (2016) 1–15. | Zbl

[6] R. Dubey , V.N. Vandana and V.N. Mishra , Second-order multiobjective symmetric programming problem and duality relations under (F, G f ) convexity. Global J. Eng. Sci. Res. 5 (2018) 187–199.

[7] R. Dubey , L.N. Mishra and V.N. Mishra , Duality relations for a class of a multiobjective fractional program- ming problem involving support functions. Am. J. Oper. Res. 8 (2018) 294–311.

[8] R. Dubey , V.N. Mishra and P. Tomar , Duality relations for second-order programming problem under (G, α f )-bonvexity assumptions. Asian-Eur. J. Math. 13 (2020) 1–17.

[9] M. Ferrara and M.V. Stefaneseu , Optimality conditions and duality in multiobjective programming with (ϕ, ρ)-invexity. Yugoslav J. Oper. Res. 18 (2008) 153–165. | Zbl

[10] T.R. Gulati and S.K. Gupta , Wolfe type second-order symmetric duality in nondifferentiable programming. J. Math. Anal. Appl. 310 (2005) 247–253. | Zbl

[11] T.R. Gulati , H. Saini and S.K. Gupta , Second-order multiobjective symmetric duality with cone constraints. Eur. J. Oper. Res. 205 (2010) 247–252. | Zbl

[12] A. Jayswal , R. Kumar and D. Kumar , Multiobjective fractional programming problems involving (p, r)−ρ−(η, θ)-invex function. J. Appl. Math. Comput. 39 (2012) 35–51. | Zbl

[13] Y.M. Kang , D.S. Kim and M.H. Kim , Optimality conditions of G-type in locally Lipchitz multiobjective programming. Vietnam J. Math. 40 (2012) 275–285. | Zbl

[14] S. Khurana , Symmetric duality in multiobjective programming involving generalized cone-invex functions. Eur. J. Oper. Res. 165 (2005) 592–597. | Zbl

[15] P. Mandal and C. Nahak , Symmetric duality with (p, r)−ρ−(η, θ)-invexity. Int. J. Pure Appl. Math. 217 (2011) 8141–8148. | Zbl

[16] O.L. Mangasarian , Second and higher order duality in nonlinear programming. J. Math. Anal. Appl. 51 (1975) 607–620. | Zbl

[17] S.K. Mishra and K.K. Lai , Second-order symmetric duality in multiobjective programming involving generalized cone-invex functions. Eur. J. Oper. Res. 178 (2007) 20–26. | Zbl

[18] N.G. Reuda , M.A. Hanson and C. Singh , Optimality and duality with generalized convexity. J. Optim. Theory Appl. 86 (1995). | Zbl

[19] S.K. Suneja , S. Aggarwal and S. Davar , Multiobjective symmetric duality involving cones. Eur. J. Oper. Res. 141 (2002) 471–479. | Zbl

[20] S.K. Suneja , C.S. Lalitha and S. Khurana , Second order symmetric duality in multiobjective programming. Eur. J. Oper. Res. 144 (2003) 492–500. | Zbl

[21] M.V. Stefaneseu and M. Ferrara , Multiobjective programming with new invexities. Optim. Lett. 7 (2013) 855–870. | Zbl

  • Balram; Jaiswal, Shubham; Dubey, Ramu Mixed‐Type Multiobjective Nondifferentiable Symmetric Duality Programming Problem Over Arbitrary Cones, Mathematical Methods in the Applied Sciences (2025) | DOI:10.1002/mma.10762
  • Saini, S.; Kailey, N. Unification of Higher-Order Dual Programs Over Cones, Asia-Pacific Journal of Operational Research, Volume 41 (2024) no. 06 | DOI:10.1142/s0217595923500422
  • Kumar, Ramesh; Mishra, Vishnu Narayan; Dubey, Ramu Non-differentiable second-order symmetric multiobjective fractional variational programming with cones constraints, RAIRO - Operations Research, Volume 58 (2024) no. 5, p. 4553 | DOI:10.1051/ro/2024165
  • Kassem, Mohamed Abd El-Hady; Rathour, Laxmi Duality under novel generalizations of the D-type-I functions for multiple objective nonlinear programming problems, Scientific African, Volume 23 (2024), p. e02067 | DOI:10.1016/j.sciaf.2024.e02067
  • Balram, xxx; Dubey, Ramu; Mishra, Lakshmi Narayan Symmetric Duality for a Multiobjective Fractional Programming with Cone Objectives as Well as Constraints, Applications of Operational Research in Business and Industries (2023), p. 333 | DOI:10.1007/978-981-19-8012-1_22
  • Jyoti; Kumar, Ramesh; Swarup, Chetan; Mishra, Vishnu Narayan; Dubey, Ramu New Class of Multiobjective Fractional Symmetric Programming with Cone Functions Under Generalized Assumptions, Applications of Operational Research in Business and Industries (2023), p. 413 | DOI:10.1007/978-981-19-8012-1_27
  • Kumar, Arvind; Kumar, Rajnish; Kumar, Naresh; Alam, Khursheed; Dubey, Ramu Generalized Second-Order G-Wolfe Type Fractional Symmetric Program and their Duality Relations under Generalized Assumptions, International Journal of Mathematical, Engineering and Management Sciences, Volume 8 (2023) no. 1, p. 142 | DOI:10.33889/ijmems.2023.8.1.009
  • Biswal, G.; Behera, N.; Mohapatra, R. N.; Padhan, S. K. A pair of Mond–Weir type third order symmetric duality, Journal of Applied Mathematics and Computing, Volume 69 (2023) no. 4, p. 3391 | DOI:10.1007/s12190-023-01884-6
  • Kassem, Mohamed Abd El-Hady Second-Order Symmetric Duality for Multiple Objectives Nonlinear Programming Under Generalizations of Cone-Preinvexity Functions, Journal of Scientific Computing, Volume 95 (2023) no. 1 | DOI:10.1007/s10915-023-02114-8
  • Kassem, Mohamed Abd El-Hady Second-order symmetric duality in vector optimization involving (K,η)-pseudobonvexity, Bulletin des Sciences Mathématiques, Volume 175 (2022), p. 103109 | DOI:10.1016/j.bulsci.2022.103109
  • Kumar, Rajnish; Alam, Alam; Dubey, Ramu Higher-Order Wolfe Type Symmetric Fractional Programming Problem Under Generalized Assumptions, International Journal of Mathematical, Engineering and Management Sciences, Volume 7 (2022) no. 6, p. 938 | DOI:10.33889/ijmems.2022.7.6.058
  • Upadhyay, B.B.; Antczak, T.; Mishra, S.K.; Shukla, K. Nondifferentiable generalized minimax fractional programming under (Ф,ρ)-invexity, Yugoslav Journal of Operations Research, Volume 32 (2022) no. 1, p. 3 | DOI:10.2298/yjor200915018u
  • Dubey, Ramu; Kumar, Rajnish; Alam, Khursheed; Narayan, Mishra; Narayan, Mishra A class of new type unified non-differentiable higher order symmetric duality theorems over arbitrary cones under generalized assumptions, Yugoslav Journal of Operations Research, Volume 32 (2022) no. 2, p. 189 | DOI:10.2298/yjor210218020d
  • Tripathi, Rajesh Kumar; Kumar, Arvind; Dubey, Ramu; Tiwari, Awanish Kumar; Tyagi, Jasvendra; Mishra, Vishnu Narayan, INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED MATHEMATICAL SCIENCES (ICRTAMS-2020), Volume 2364 (2021), p. 020031 | DOI:10.1063/5.0063227
  • Kumar, Rajnish; Alam, Khursheed; Dubey, Ramu Second-order multi-objective non–differentiable Schaible type model and its duality relation under (K xQ)–C–type–I functions, International Journal of Modelling and Simulation, Volume 41 (2021) no. 5, p. 397 | DOI:10.1080/02286203.2021.1983966
  • Dubey, Ramu; Kumar, Arvind; Ali, Rifaqat; Mishra, Lakshmi Narayan New class of G-Wolfe-type symmetric duality model and duality relations under Gf-bonvexity over arbitrary cones, Journal of Inequalities and Applications, Volume 2020 (2020) no. 1 | DOI:10.1186/s13660-019-2279-0
  • Dubey, Ramu; Mishra, Lakshmi Narayan; Cesarano, Clemente Multiobjective Fractional Symmetric Duality in Mathematical Programming with (C,Gf)-Invexity Assumptions, Axioms, Volume 8 (2019) no. 3, p. 97 | DOI:10.3390/axioms8030097
  • Dubey, Ramu; Mishra, Vishnu Narayan; Ali, Rifaqat Duality for Unified Higher-Order Minimax Fractional Programming with Support Function under Type-I Assumptions, Mathematics, Volume 7 (2019) no. 11, p. 1034 | DOI:10.3390/math7111034
  • Dubey, Ramu; Mishra, Lakshmi Narayan; Sánchez Ruiz, Luis Manuel Nondifferentiable G-Mond–Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions, Symmetry, Volume 11 (2019) no. 11, p. 1348 | DOI:10.3390/sym11111348

Cité par 19 documents. Sources : Crossref