Solving optimal control problems using the Picard’s iteration method
RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 5, pp. 1419-1435.

In this paper, the Picard’s iteration method is proposed to obtain an approximate analytical solution for linear and nonlinear optimal control problems with quadratic objective functional. It consists in deriving the necessary optimality conditions using the minimum principle of Pontryagin, which result in a two-point-boundary-value-problem (TPBVP). By applying the Picard’s iteration method to the resulting TPBVP, the optimal control law and the optimal trajectory are obtained in the form of a truncated series. The efficiency of the proposed technique for handling optimal control problems is illustrated by four numerical examples, and comparison with other methods is made.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2019057
Classification : 49J15, 93C15
Mots-clés : Optimal control, Pontryagin’s minimum principle, Hamilton–Pontryagin equations, Picard’s iteration method, ordinary differential equations
@article{RO_2020__54_5_1419_0,
     author = {Akkouche, Abderrahmane and Aidene, Mohamed},
     title = {Solving optimal control problems using the {Picard{\textquoteright}s} iteration method},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1419--1435},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/ro/2019057},
     mrnumber = {4126313},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2019057/}
}
TY  - JOUR
AU  - Akkouche, Abderrahmane
AU  - Aidene, Mohamed
TI  - Solving optimal control problems using the Picard’s iteration method
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2020
SP  - 1419
EP  - 1435
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2019057/
DO  - 10.1051/ro/2019057
LA  - en
ID  - RO_2020__54_5_1419_0
ER  - 
%0 Journal Article
%A Akkouche, Abderrahmane
%A Aidene, Mohamed
%T Solving optimal control problems using the Picard’s iteration method
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2020
%P 1419-1435
%V 54
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2019057/
%R 10.1051/ro/2019057
%G en
%F RO_2020__54_5_1419_0
Akkouche, Abderrahmane; Aidene, Mohamed. Solving optimal control problems using the Picard’s iteration method. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 5, pp. 1419-1435. doi : 10.1051/ro/2019057. http://archive.numdam.org/articles/10.1051/ro/2019057/

[1] A. Akkouche, A. Maidi and M. Aidene, Optimal control of partial differential equations based on the variational iteration method. Comput. Math. Appl. 68 (2014) 622–631. | DOI | MR

[2] R.P. Agarwal and Y.M. Chow, Iterative methods for a fourth order boundary value problem. J. Comput. Appl. Math. 10 (1984) 203–217. | DOI | MR | Zbl

[3] R.P. Agarwal and J. Vosmanský, Necessary and sufficient conditions for the convergence of approximate Picard’s iterates for nonlinear boundary value problems. Arch. Math. 21 (1985) 171–176. | MR | Zbl

[4] U.M. Ascher, R.M. Mattheij and R.D. Russell, Numerical Solution of Boundary-value Problems for Ordinary Differential Equations. Prentice Hall (1988). | MR | Zbl

[5] X. Bai and J.L. Junkins, Modified Chebyshev-Picard iteration methods for solution of boundary value problems. J. Astron. Sci. 58 (2011) 615–642. | DOI

[6] J.T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edition. Society for Industrial and Applied Mathematics, Philadelphia (2009). | MR | Zbl

[7] R. Bulirsch, A. Miele, J. Stoer and K.H. Well, Optimal Control: Calculus Of Variations, Optimal Control Theory And Numerical Methods. Springer, Boston (1993). | DOI | MR

[8] A.C. Chiang, Elements of Dynamic Optimization. McGraw-Hill, New York (1992).

[9] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, New Jersey (2012). | DOI | MR | Zbl

[10] S. Effati and S. Nik, Solving a class of linear and non-linear optimal control problems by homotopy perturbation method. IMA J. Math. Control Inf. 28 (2011) 539–553. | DOI | MR | Zbl

[11] H.A. El-Arabawy and I.K. Youssef, A symbolic algorithm for solving linear two-point boundary value problems by modified Picard technique. Math. Comput. Model. 49 (2009) 344–351. | DOI | MR | Zbl

[12] S. Gonzalez and A. Miele, Sequential gradien-restoration algorithm for optimal control problems with general boundary conditions. J. Optim. Theory Appl. 26 (1978) 395–425. | DOI | MR | Zbl

[13] I.H. Abdel-Halim Hassan, Differential transformation technique for solving higher-order initial value problems. Appl. Math. Comput. 154 (2004) 299–311. | MR | Zbl

[14] J.H. He, Homotopy perturbation technique. Comput. Method Appl. Mech. Eng. 178 (1999) 257–262. | DOI | MR | Zbl

[15] J.H. He, Variational iteration method a kind of non-linear analytical technique: Some examples. Int. J. Non-Linear Mech. 34 (1999) 699–708. | DOI | Zbl

[16] J.H. He, Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114 (2000) 115–123. | MR | Zbl

[17] J.H. He, Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 135 (2003) 73–79. | MR | Zbl

[18] J.H. He, New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20 (2006) 2561–2568. | DOI | MR

[19] H. Jaddu, Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials. J. Frankl. Inst. 339 (2002) 479–498. | DOI | MR | Zbl

[20] M.J. Jang, C.L. Chen and Y.C. Liy, On solving the initial-value problems using the differential transformation method. Appl. Math. Comput. 115 (2000) 145–160. | MR | Zbl

[21] H.B. Keller, Numerical Solution of Two Point Boundary Value Problems. Society for Industrial and Applied Mathematics, Philadelphia (1976). | DOI | MR | Zbl

[22] W.G. Kelley, A.C. Peterson, The Theory of Differential Equations: Classical and Qualitative, 2nd edition. Springer, New York (2010). | MR | Zbl

[23] M.M. Khader, On the numerical solutions to nonlinear biochemical reaction model using Picard-Padé technique. World J. Model. Simul. 9 (2013) 38–46.

[24] D.E. Kirk, Optimal Control Theory. An Introduction. Prentice-Hall (1970).

[25] M. Lal and D. Moffatt, Picard’s successive approximation for non-linear two-point-boundary-value problems. J. Comput. Appl. Math. 8 (1982) 233–236. | DOI | MR | Zbl

[26] E.B. Lee and L. Markus, Foundations of Optimal Control Theory. John Wiley and Sons, New York (1967). | MR | Zbl

[27] S. Liao, On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147 (2004) 499–513. | MR | Zbl

[28] A. Maidi and J.P. Corriou, Open-loop optimal controller design using variational iteration method. Appl. Math. Comput. 219 (2013) 8632–8645. | MR | Zbl

[29] H.R. Marzban and S.M. Hoseini, A composite Chebyshev finite difference method for nonlinear optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 1347–1361. | DOI | MR | Zbl

[30] H.S. Nik, S. Effati and A. Yildirim, Solution of linear optimal control systems by differential transform method. Neural Comput. Appl. 23 (2013) 1311–1317. | DOI

[31] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes. Pergamon Press, New York (1964). | MR | Zbl

[32] J.I. Ramos, On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl. Math. Comput. 199 (2008) 39–69. | MR | Zbl

[33] J.I. Ramos, On the Picard-Lindelof method for nonlinear second-order differential equations. Appl. Math. Comput. 203 (2008) 238–242. | MR | Zbl

[34] J.I. Ramos, Iterative and non-iterative methods for non-linear Volterra integro-differential equations. Appl. Math. Comput. 214 (2009) 287–296. | MR | Zbl

[35] J.I. Ramos, Picard’s iterative method for nonlinear advection-reaction-diffusion equations. Appl. Math. Comput. 215 (2009) 1526–1536. | MR | Zbl

[36] W.A. Robin, Solving differential equations using modified Picard iteration. Int. J. Math. Edu. Sci. Technol. 41 (2010) 649–665. | DOI | MR | Zbl

[37] R.W.H. Sargent, Optimal control. J. Comput. Appl. Math. 124 (2000) 361–371. | DOI | MR | Zbl

[38] M. Shirazian and S. Effati, Solving a class of nonlinear optimal control problems via He’s variational iteration method. Int. J. Control Autom. Syst. 10 (2012) 249–256. | DOI

[39] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Springer-Verlag, Berlin (1980). | DOI | MR | Zbl

[40] S. Titouche, P. Spiteri, F. Messine and M. Aidene, Optimal control of a large thermic process. J. Process Control 25 (2015) 50–58. | DOI

[41] E. Trélat, Contrôle Optimal: Théorie et Applications. Vuibert, Collection Mathématiques Concrètes (2005). | MR | Zbl

[42] S.A. Yousefi, M. Dehgan and A. Lotfi, Finding the optimal control of linear systems via He’s variational iteration method. Int. J. Comput. Math. 87 (2010) 1042–1050. | DOI | MR | Zbl

[43] M.S. Zahedi and H.S. Nik, On homotopy analysis method applied to linear optimal control problems. Appl. Math. Model. 37 (2013) 9617–9629. | DOI | MR

Cité par Sources :