The traditional flowshop scheduling problem can be generalised to a matricial optimisation problem in Max-Plus algebra. A family of lower bounds is developped for this new problem and proof is given that these bounds are a generalisation of the lower bounds of Lageweg et al.
Le traditionnel problème d'ordonnancement de type flowshop se généralise en un problème d'optimisation matricielle dans l'algèbre Max-Plus. Une famille de bornes inférieures est présentée pour ce nouveau problème et la preuve est apportée que ces bornes généralisent les bornes de Lageweg et al.
@article{RO_2003__37_4_273_0, author = {Lent\'e, Christophe and Bouquard, Jean-Louis}, title = {G\'en\'eralisation max-plus des bornes de {Lageweg,} {Lenstra} et {Rinnooy} {Kan}}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {273--289}, publisher = {EDP-Sciences}, volume = {37}, number = {4}, year = {2003}, doi = {10.1051/ro:2004006}, mrnumber = {2065243}, zbl = {1092.90024}, language = {fr}, url = {http://archive.numdam.org/articles/10.1051/ro:2004006/} }
TY - JOUR AU - Lenté, Christophe AU - Bouquard, Jean-Louis TI - Généralisation max-plus des bornes de Lageweg, Lenstra et Rinnooy Kan JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2003 SP - 273 EP - 289 VL - 37 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2004006/ DO - 10.1051/ro:2004006 LA - fr ID - RO_2003__37_4_273_0 ER -
%0 Journal Article %A Lenté, Christophe %A Bouquard, Jean-Louis %T Généralisation max-plus des bornes de Lageweg, Lenstra et Rinnooy Kan %J RAIRO - Operations Research - Recherche Opérationnelle %D 2003 %P 273-289 %V 37 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2004006/ %R 10.1051/ro:2004006 %G fr %F RO_2003__37_4_273_0
Lenté, Christophe; Bouquard, Jean-Louis. Généralisation max-plus des bornes de Lageweg, Lenstra et Rinnooy Kan. RAIRO - Operations Research - Recherche Opérationnelle, Volume 37 (2003) no. 4, pp. 273-289. doi : 10.1051/ro:2004006. http://archive.numdam.org/articles/10.1051/ro:2004006/
[1] Synchronisation and Linearity: An Algebra for Discrete Event Systems. John Wiley and Sons, New York (1992). | MR | Zbl
, , and ,[2] Scheduling groups of jobs in the two machine flow shop. Math. Comput. Modeling 13 (1990) 29-36. | MR
,[3] Matrices over ordered algebraic structures. J. Lond. Math. Soc. 39 (1964) 427-432. | MR | Zbl
,[4] Residuation Theory. Pergamon Press (1972). | MR | Zbl
and ,[5] Lot streaming in a two stage flow shop with setup, processing and removal times separated. J. Oper. Res. Soc. 45 (1994) 1445-1455. | Zbl
,[6] A linear system-theoretic view of discret-event processes and its use for performance evaluation in manufacturing. IEEE Trans. Autom. Control 30 (1985) 210-220. | MR | Zbl
, , and ,[7] Two-machine flowshop group scheduling problem. Comput. Oper. Res. 27 (2000) 75-985. | MR | Zbl
and ,[8] The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117-129. | MR | Zbl
, and ,[9] Théorie des systèmes linéaires dans les dioïdes. Thèse de doctorat, École des mines de Paris (1992).
,[10] Modeling and analysis of timed petri nets using heaps of pieces. IEEE Trans. Autom. Control 44 (1999) 683-698. | MR | Zbl
and ,[11] Schedule algebras and their use in formulating general systems simulations, in Industrial scheduling. Muth and Thompson, Prentice Hall, New Jersey, USA (1963).
,[12] Graphes et algorithmes1995). | MR | Zbl
and ,[13] Idempotency. Publications of the Newton Institute, Cambridge University Press (1998). | MR
,[14] Cyclic scheduling on parallel processors: An overview, in Scheduling Theory and its Applications, edited by P. Chretienne, E. Coffman, J. Lenstra and Z. Liu. John Wiley (1995) 193-226. | MR
and ,[15] An extention of johnson's results on job-lot scheduling. Naval Res. Log. Quart. 3 (1956) 201-203.
,[16] Optimal two- and three-stage production schedules with setup times included. Naval Res. Log. Quart. 1 (1954) 61-68.
,[17] A general bounding scheme for the flow-shop problem. Oper. Res. 26 (1978) 53-67. | Zbl
, and ,[18] Analyse Max-Plus de problèmes d'ordonnancement de type Flowshop. Thèse de doctorat, Université François Rabelais, Tours (novembre 2001).
,[19] Une application des algèbres tropicales aux problèmes d'ordonnancement de type flowshop, in MOSIM'99, Annecy, France (octobre 1999) 177-182.
and ,[20] Modélisation unifiée de flowshops à deux machines, in conférence francophone de modélisation et simulation, (MOSIM'01), Troyes, France (avril 2001) 599-603.
, and ,[21] Max-plus generalization of a flowshop problem lower and upper bounds, in (INCOM'01), Vienne, Autriche (sept. 2001).
, and ,[22] Flowshops et minimisation de produits matriciels max 599-603.
, and ,[23] Sequencing n jobs on two machines with arbitrary time lags. Manage. Sci. 5 (1959) 293-298. | MR | Zbl
,[24] A note on the two-machine flow shop scheduling problem with separated setup and cleanup times, time lags and transportation times. Rep. Univ. Electro-com 34 (1983).
and ,[25] Sequencing n jobs on two machines with setup, processing and removal times separated. Naval Res. Log. Quart. 29 (1982) 517-519. | Zbl
,[26] Optimal two-stage production scheduling with setup times separated. AIIE Transactions 11 (1979) 261-263.
and ,Cited by Sources: