Généralisation max-plus des bornes de Lageweg, Lenstra et Rinnooy Kan
RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 4, pp. 273-289.

Le traditionnel problème d'ordonnancement de type flowshop se généralise en un problème d'optimisation matricielle dans l'algèbre Max-Plus. Une famille de bornes inférieures est présentée pour ce nouveau problème et la preuve est apportée que ces bornes généralisent les bornes de Lageweg et al.

The traditional flowshop scheduling problem can be generalised to a matricial optimisation problem in Max-Plus algebra. A family of lower bounds is developped for this new problem and proof is given that these bounds are a generalisation of the lower bounds of Lageweg et al.

     author = {Lent\'e, Christophe and Bouquard, Jean-Louis},
     title = {G\'en\'eralisation max-plus des bornes de Lageweg, Lenstra et Rinnooy Kan},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {273--289},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {4},
     year = {2003},
     doi = {10.1051/ro:2004006},
     zbl = {1092.90024},
     mrnumber = {2065243},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.1051/ro:2004006/}
Lenté, Christophe; Bouquard, Jean-Louis. Généralisation max-plus des bornes de Lageweg, Lenstra et Rinnooy Kan. RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 4, pp. 273-289. doi : 10.1051/ro:2004006. http://archive.numdam.org/articles/10.1051/ro:2004006/

[1] F. Baccelli, G. Cohen, G. Olsder and J.P. Quadrat, Synchronisation and Linearity: An Algebra for Discrete Event Systems. John Wiley and Sons, New York (1992). | MR 1204266 | Zbl 0824.93003

[2] K.R. Baker, Scheduling groups of jobs in the two machine flow shop. Math. Comput. Modeling 13 (1990) 29-36. | MR 1047077

[3] T.S. Blyth, Matrices over ordered algebraic structures. J. Lond. Math. Soc. 39 (1964) 427-432. | MR 167438 | Zbl 0154.01104

[4] T.S. Blyth and M.F. Janowitz, Residuation Theory. Pergamon Press (1972). | MR 396359 | Zbl 0301.06001

[5] F.C. Cetinkaya, Lot streaming in a two stage flow shop with setup, processing and removal times separated. J. Oper. Res. Soc. 45 (1994) 1445-1455. | Zbl 0814.90045

[6] G. Cohen, D. Dubois, J.P. Quadrat and M. Viot, A linear system-theoretic view of discret-event processes and its use for performance evaluation in manufacturing. IEEE Trans. Autom. Control 30 (1985) 210-220. | MR 778424 | Zbl 0557.93005

[7] Y. Dar-Li and C. Maw-Sheng, Two-machine flowshop group scheduling problem. Comput. Oper. Res. 27 (2000) 75-985. | MR 1762925 | Zbl 0970.90037

[8] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117-129. | MR 418895 | Zbl 0396.90041

[9] S. Gaubert, Théorie des systèmes linéaires dans les dioïdes. Thèse de doctorat, École des mines de Paris (1992).

[10] S. Gaubert and J. Mairesse, Modeling and analysis of timed petri nets using heaps of pieces. IEEE Trans. Autom. Control 44 (1999) 683-698. | MR 1684424 | Zbl 0955.68082

[11] B. Giffler, Schedule algebras and their use in formulating general systems simulations, in Industrial scheduling. Muth and Thompson, Prentice Hall, New Jersey, USA (1963).

[12] M. Gondran and M. Minoux, Graphes et algorithmes1995). | MR 868083 | Zbl 0497.05023

[13] J. Gunawardena, Idempotency. Publications of the Newton Institute, Cambridge University Press (1998). | MR 1608365

[14] C. Hanen and A. Munier, Cyclic scheduling on parallel processors: An overview, in Scheduling Theory and its Applications, edited by P. Chretienne, E. Coffman, J. Lenstra and Z. Liu. John Wiley (1995) 193-226. | MR 1376614

[15] J.R. Jackson, An extention of johnson's results on job-lot scheduling. Naval Res. Log. Quart. 3 (1956) 201-203.

[16] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included. Naval Res. Log. Quart. 1 (1954) 61-68.

[17] B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, A general bounding scheme for the flow-shop problem. Oper. Res. 26 (1978) 53-67. | Zbl 0371.90059

[18] C. Lenté, Analyse Max-Plus de problèmes d'ordonnancement de type Flowshop. Thèse de doctorat, Université François Rabelais, Tours (novembre 2001).

[19] C. Lenté and J.C. Billaut, Une application des algèbres tropicales aux problèmes d'ordonnancement de type flowshop, in MOSIM'99, Annecy, France (octobre 1999) 177-182.

[20] C. Lenté, J.C. Billaut and J.L. Bouquard, Modélisation unifiée de flowshops à deux machines, in conférence francophone de modélisation et simulation, (MOSIM'01), Troyes, France (avril 2001) 599-603.

[21] C. Lenté, J.C. Billaut and J.L. Bouquard, Max-plus generalization of a flowshop problem lower and upper bounds, in (INCOM'01), Vienne, Autriche (sept. 2001).

[22] C. Lenté, F. Chevaleyre and N. Neel, Flowshops et minimisation de produits matriciels max 599-603.

[23] L.G. Mitten, Sequencing n jobs on two machines with arbitrary time lags. Manage. Sci. 5 (1959) 293-298. | MR 101164 | Zbl 0995.90539

[24] I. Nabeshima and S. Maruyama, A note on the two-machine flow shop scheduling problem with separated setup and cleanup times, time lags and transportation times. Rep. Univ. Electro-com 34 (1983).

[25] D.R. Sule, Sequencing n jobs on two machines with setup, processing and removal times separated. Naval Res. Log. Quart. 29 (1982) 517-519. | Zbl 0511.90073

[26] T. Yoshida and K. Hitomi, Optimal two-stage production scheduling with setup times separated. AIIE Transactions 11 (1979) 261-263.