A single-server queueing system with a batch markovian arrival process (BMAP) and MAP-input of disasters causing all customers to leave the system instantaneously is considered. The system has two operation modes, which depend on the current queue length. The embedded and arbitrary time stationary queue length distribution has been derived and the optimal control threshold strategy has been determined.
@article{RO_2004__38_2_153_0, author = {Semenova, Olga V.}, title = {Optimal control for a {BMAP/SM/1} queue with {MAP-input} of disasters and two operation modes}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {153--171}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/ro:2004017}, mrnumber = {2081835}, zbl = {1092.90018}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2004017/} }
TY - JOUR AU - Semenova, Olga V. TI - Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2004 SP - 153 EP - 171 VL - 38 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2004017/ DO - 10.1051/ro:2004017 LA - en ID - RO_2004__38_2_153_0 ER -
%0 Journal Article %A Semenova, Olga V. %T Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes %J RAIRO - Operations Research - Recherche Opérationnelle %D 2004 %P 153-171 %V 38 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2004017/ %R 10.1051/ro:2004017 %G en %F RO_2004__38_2_153_0
Semenova, Olga V. Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 153-171. doi : 10.1051/ro:2004017. http://archive.numdam.org/articles/10.1051/ro:2004017/
[1] G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233-249. | MR | Zbl
,[2] The queue with mass exodus and mass arrivals when empty. J. Appl. Prob. 34 (1997) 192-207. | MR | Zbl
and ,[3] Optimal control for a queue with two operation modes. Prob. Eng. Inform. Sci. 11 (1997) 225-265. | MR | Zbl
,[4] Optimal control for a queue with two service modes. Math. Prob. Eng. 5 (1999) 255-273. | EuDML | Zbl
and ,[5] queue with Markovian input of disasters and non-instantaneous recovery. Perform. Eval. 45 (2001) 19-32. | Zbl
and ,[6] A queueing system with Markovian arrival of disasters. J. Appl. Prob. 36 (1999) 868-881. | MR | Zbl
and ,[7] Embedded stationary distribution for the queue with disasters, Queues: Flows Syst. Networks 14 (1998) 92-97.
and ,[8] Linear independence of root equations for type of Markov chains. Queue. Syst. 20 (1995) 321-339. | MR | Zbl
, , and ,[9] Spectral analysis of and type Markov chains. Adv. Appl. Prob. 28 (1996) 114-165. | MR | Zbl
, and ,[10] Réseaux stochastiques ouverts avec clients négatifs et positifs, et réseaux neuronaux. C. R. Acad. Sci. Paris II 309 (1989) 979-982. | MR
,[11] Random neural networks with positive and negative signals and product form solution. Neural Comput. 1 (1989) 502-510.
,[12] Réseaux neuronaux aléatoires stables. C. R. Acad. Sci. 310 (1990) 177-180. | MR
,[13] Stable random neural networks. Neural Comput. 2 (1990) 239-247. | MR
,[14] Queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 655-663. | MR | Zbl
,[15] Queues with negative arrivals. J. Appl. Prob. 28 (1991) 245-250. | MR | Zbl
, and ,[16] Performances d’un systeme informatique dupliqu. C. R. Acad. Sci. Paris II 312 (1991) 27-30.
and ,[17] Stability of product form G-networks. Proba Eng. Inform. Sci. 6 (1992) 271-276. | Zbl
and ,[18] G-networks with instantaneous customer movement. J. Appl. Prob. 30 (1993) 742-748. | MR | Zbl
,[19] G-networks with signals and batch removal. Prob. Eng. Inform. Sci. 7 (1993) 335-342.
,[20] G-networks: An unifying model for queueing networks and neural networks. Ann. oper. Res. 48, (1994) 141-156. | MR | Zbl
,[21] G-networks with multiple classes of positive and negative customers. Theoret. Comput. Sci. 155 (1996) 141-156. | MR | Zbl
, and ,[22] G-networks with multiple classes of signal and positive customers. Eur. J. Oper. Res. 108 (1998) 293-305. | Zbl
and ,[23] Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Chichester, UK (1981). | MR | Zbl
,[24] The queue with negative customers. Adv. Appl. Prob. 28 (1996) 540-566. | MR | Zbl
and ,[25] A Pollaczeck-Khinchine formula for queues with disasters. J. Appl. Prob. 33 (1996) 1191-1200. | Zbl
and ,[26] New results on the single server queue with a batch Markovian arrival processes. Stoch. Mod. 7 (1991) 1-46. | MR | Zbl
,[27] Some steady-state distributions for the queue. Stoch. Mod. 10 (1994) 575-598. | MR | Zbl
and ,[28] Structured Stochastic Matrices of Type Applications. Marcel Dekker, New York (1989). | MR | Zbl
,[29] An vacation model with two service modes. Prob. Eng. Inform. Sci. 9 (1995) 355-374. | MR
and ,[30] A regenerative approach for an queue with two service modes. Automat. Control Comput. Sci. 32 (1998) 3-14.
,[31] Optimal control for a queue with two service modes. Eur. J. Oper. Res. 113 (1999) 610-619. | Zbl
and ,[32] Probability Theory and Random Process. High School, Kiev (1980).
,[33] On the optimality of a switch-over with exponential controlling the queue size in a queue with variable service rate. Lect. Notes Comput. Sci. (1976). | Zbl
,Cité par Sources :