In this paper, information theoretic methodology for system modeling is applied to investigate the probability density function of the busy period in vacation models operating under the -, - and -policies. The information about the density function is limited to a few mean value constraints (usually the first moments). By using the maximum entropy methodology one obtains the least biased probability density function satisfying the system’s constraints. The analysis of the three controllable queueing models provides a parallel numerical study of the solution obtained via the maximum entropy approach versus “classical” solutions. The maximum entropy analysis of a continuous system descriptor (like the busy period) enriches the current body of literature which, in most cases, reduces to discrete queueing measures (such as the number of customers in the system).
@article{RO_2004__38_3_195_0, author = {Artalejo, Jesus R. and Lopez-Herrero, Maria J.}, title = {Entropy maximization and the busy period of some single-server vacation models}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {195--213}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/ro:2004020}, mrnumber = {2091752}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2004020/} }
TY - JOUR AU - Artalejo, Jesus R. AU - Lopez-Herrero, Maria J. TI - Entropy maximization and the busy period of some single-server vacation models JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2004 SP - 195 EP - 213 VL - 38 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2004020/ DO - 10.1051/ro:2004020 LA - en ID - RO_2004__38_3_195_0 ER -
%0 Journal Article %A Artalejo, Jesus R. %A Lopez-Herrero, Maria J. %T Entropy maximization and the busy period of some single-server vacation models %J RAIRO - Operations Research - Recherche Opérationnelle %D 2004 %P 195-213 %V 38 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2004020/ %R 10.1051/ro:2004020 %G en %F RO_2004__38_3_195_0
Artalejo, Jesus R.; Lopez-Herrero, Maria J. Entropy maximization and the busy period of some single-server vacation models. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 3, pp. 195-213. doi : 10.1051/ro:2004020. http://archive.numdam.org/articles/10.1051/ro:2004020/
[1] Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7 (1995) 36-43. | Zbl
and ,[2] G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233-249. | Zbl
,[3] On the M/G/1 queue with D-policy. Appl. Math. Modelling 25 (2001) 1055-1069. | Zbl
,[4] On the D-policy for the M/G/1 queue. Manage. Sci. 21 (1975) 1073-1076. | Zbl
and ,[5] Basic Optimization Methods. Edward Arnold, London (1984). | Zbl
,[6] Queueing systems with vacations - A survey. Queue. Syst. 1 (1986) 29-66. | Zbl
,[7] A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium. Acta Inform. 19 (1983) 339-355. | Zbl
and ,[8] Information theoretic approximations for the M/G/1 retrial queue. Acta Inform. 31 (1994) 559-571. | Zbl
, and ,[9] Distributions and first moments of the busy period and idle periods in controllable M/G/1 queueing models with simple and dyadic policies. Stoch. Anal. Appl. 13 (1995) 47-81. | Zbl
, and ,[10] Product-form queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 656-663. | Zbl
,[11] G-networks: A unifying model for neural and queueing networks. Ann. Oper. Res. 48 (1994) 433-461. | Zbl
,[12] A queue with server of walking type (autonomous service). Annales de l'Institut Henry Poincaré, Series B 16 (1980) 63-73. | Numdam | Zbl
and ,[13] Maximum entropy condition in queueing theory. J. Opl. Res. Soc. 37 (1986) 293-301. | Zbl
,[14] The T-policy for the M/G/1 queue. Manage. Sci. 23 (1977) 775-778. | Zbl
,[15] Queueing Systems, Volume 1: Theory. John Wiley & Sons, Inc., New York (1975). | Zbl
,[16] Entropy maximisation and queueing networks models. Ann. Oper. Res. 48 (1994) 63-126. | Zbl
,[17] Utilization of idle time in an M/G/1 queueing system. Manage. Sci. 22 (1975) 202-211. | Zbl
and ,[18] A simplex method for function minimization. Comput. J. 7 (1964) 308-313. | Zbl
and ,[19] Numerical Recipes in Fortran, The Art of Scientific Computing. Cambridge University Press (1992). | MR | Zbl
, , and ,[20] Information theoretic approximations for M/G/1 and G/G/1 queuing systems. Acta Inform. 17 (1982) 43-61. | Zbl
,[21] Maximum entropy solution to a quorum queueing system. Math. Comput. Modelling 34 (2001) 19-27. | Zbl
and ,[22] Queueing Analysis. Vol. 1-3, North-Holland, Amsterdam (1991).
,[23] Control of the service process in a queueing system. Eur. J. Oper. Res. 23 (1986) 141-158. | Zbl
,[24] A maximum entropy method for inverting Laplace transforms of probability density functions. Biometrika 82 (1995) 887-892. | Zbl
and ,[25] Maximum entropy analysis to the N policy M/G/1 queueing systems with a removable server. Appl. Math. Modelling 26 (2002) 1151-1162.
, and ,[26] Queueing systems with a removable server station. Oper. Res. Quar. 14 (1963) 393-405.
and ,Cité par Sources :