1.0957 - Approximation algorithm for Random MAX-3SAT
RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 1, pp. 95-103.

We prove that MAX-3SAT can be approximated in polynomial time within a factor 1.0957 on random instances.

DOI : 10.1051/ro:2007008
Classification : 68W25, 03B70
Mots-clés : random satisfiability, approximate algorithms
@article{RO_2007__41_1_95_0,
     author = {Fernandez de La Vega, Wenceslas and Karpinski, Marek},
     title = {1.0957 - {Approximation} algorithm for {Random} {MAX-3SAT}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {95--103},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {1},
     year = {2007},
     doi = {10.1051/ro:2007008},
     mrnumber = {2310542},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro:2007008/}
}
TY  - JOUR
AU  - Fernandez de La Vega, Wenceslas
AU  - Karpinski, Marek
TI  - 1.0957 - Approximation algorithm for Random MAX-3SAT
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2007
SP  - 95
EP  - 103
VL  - 41
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro:2007008/
DO  - 10.1051/ro:2007008
LA  - en
ID  - RO_2007__41_1_95_0
ER  - 
%0 Journal Article
%A Fernandez de La Vega, Wenceslas
%A Karpinski, Marek
%T 1.0957 - Approximation algorithm for Random MAX-3SAT
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2007
%P 95-103
%V 41
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro:2007008/
%R 10.1051/ro:2007008
%G en
%F RO_2007__41_1_95_0
Fernandez de La Vega, Wenceslas; Karpinski, Marek. 1.0957 - Approximation algorithm for Random MAX-3SAT. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 1, pp. 95-103. doi : 10.1051/ro:2007008. http://archive.numdam.org/articles/10.1051/ro:2007008/

[1] D. Achioptas, Setting two variables at a time yields a new lower bound for random 3-SAT, in Proc. 32th STOC (2000) 28-37.

[2] N. Alon and J. Spencer, The Probabilistic Method. Wiley (1992). | MR | Zbl

[3] P. Beame, R. Karp, T. Pitassi and M. Saks, On the Complexity of Unsatisfiability Proofs for Random k-CNF Formulas, in Proc. 30th STOC (1998) 561-571. | Zbl

[4] O. Dubois, Y. Boufkhad and J. Mandler, Typical 3-SAT Formulae and the Satisfiability Threshold, in Proc. 11th ACM-SIAM SODA (2000) 126-127. | Zbl

[5] O. Dubois, R. Monasson, B. Selman and R. Zecchina, eds, Phase Transitions in Combinatorial problems, Theor. Comput. Sci. 265 (2001) Nos. 1-2. | Zbl

[6] J. Friedman, A. Goerdt, Recognizing more unsatisfiable random 3SAT instances efficiently, in Proc. 28th ICALP (2001) 310-321. | MR | Zbl

[7] U. Feige, Relations between Average Case Complexity and Approximation Complexity, in Proc. 34th ACM STOC (2002) 534-543

[8] W. Fernandez De La Vega and Marek Karpinski, 9/8 Approximation Algorithm for Random MAX-3SAT, ECCC tracts, TR02-070, Dec. 13 (2002). Revision accepted Jan. 10 (2003)

[9] E. Friedgut, Necessary and sufficient conditions for sharp thresholds of graph properties and the k-SAT problem. J. Amer. Math. Soc. 12 (1999) 1017-1054. | Zbl

[10] A. Frieze and S. Suen, Analysis of Two Simple Heuristics of a Random Instance of k-SAT, J. Algorithms 20 (1996) 312-355. | Zbl

[11] J. Gu, P.W. Purdom, J. Franco and B.J. Wah, Algorithms for the satisfiability (SAT) problem: A Survey, in Satisfiability (SAT) Problem, DIMACS, American Mathematical Society (1997) 19-151. | Zbl

[12] J. Håstad, Some optimal innasproximability results, in Proc. 29th ACM STOC (1997) 1-10. | Zbl

[13] W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1964) 13-30. | Zbl

[14] Y. Interian, Approximation Algorithm for Random MAX-kSAT, in International Conference on the Theory and Applications of Satisfiability testing (2004). | Zbl

[15] A. El Maftouhi and W. Fernandez De La Vega, In Random 3-SAT. Combin. Probab. Comput. 4 (1995) 189-195. | Zbl

Cité par Sources :