In this paper, which is an extension of [4], we first show the existence of solutions to a class of Min Sup problems with linked constraints, which satisfy a certain property. Then, we apply our result to a class of weak nonlinear bilevel problems. Furthermore, for such a class of bilevel problems, we give a relationship with appropriate d.c. problems concerning the existence of solutions.
Mots-clés : $\operatorname{Min}\operatorname{Sup}$ problems, variational convergence, bilevel programming, d.c. programming
@article{RO_2008__42_2_87_0, author = {Aboussoror, Abdelmalek and Mansouri, Abdelatif}, title = {Existence of solutions to weak nonlinear bilevel problems via {MinSup} and d.c. problems}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {87--103}, publisher = {EDP-Sciences}, volume = {42}, number = {2}, year = {2008}, doi = {10.1051/ro:2008012}, mrnumber = {2431394}, zbl = {1151.49010}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2008012/} }
TY - JOUR AU - Aboussoror, Abdelmalek AU - Mansouri, Abdelatif TI - Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2008 SP - 87 EP - 103 VL - 42 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2008012/ DO - 10.1051/ro:2008012 LA - en ID - RO_2008__42_2_87_0 ER -
%0 Journal Article %A Aboussoror, Abdelmalek %A Mansouri, Abdelatif %T Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems %J RAIRO - Operations Research - Recherche Opérationnelle %D 2008 %P 87-103 %V 42 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2008012/ %R 10.1051/ro:2008012 %G en %F RO_2008__42_2_87_0
Aboussoror, Abdelmalek; Mansouri, Abdelatif. Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 2, pp. 87-103. doi : 10.1051/ro:2008012. http://archive.numdam.org/articles/10.1051/ro:2008012/
[1] Existence of Solutions to Two-Level Optimization Problems with Nonunique Lower-Level Solutions. J. Math. Anal. Appl. 254 (2001) 348-357. | MR | Zbl
and ,[2] Weak Bilevel Programming Problems: Existence of Solutions. Adv. Math. Res. 1 (2002) 83-92. | MR | Zbl
,[3] Weak linear bilevel programming problems: existence of solutions via a penalty method. J. Mat. Anal. Appl. 304 (2005) 399-408. | MR | Zbl
and ,[4] Sufficient conditions for Min Sup problems and application to bilevel programs, in Proc CIRO'05, IV Conférence Internationale en Recherche Opérationnelle, Théorie et Applications 1 (2005) 99-107.
and ,[5] Applied Nonlinear Analysis1984). | MR | Zbl
and ,[6] Variational Convergences for Functions and Operators. Pitman, Boston (1984). | MR | Zbl
,[7] Non-Linear Parametric Optimization. Akademie-Verlag, Berlin (1982). | Zbl
, , , and ,[8] Su un Tipo di Convergenza Variazionale. Atti Accad. Naz. Lincei Sci. Fi. Mat. Natur. 58 (1975) 842-850. | MR | Zbl
and ,[9] Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52 (2003) 333-359. | MR | Zbl
, and Zolezzi, Well-Posed Optimization Problems. Lect. Notes in Mathematics. Springer-Verlag, Berlin. 1543 (1993). |[11] A linear Max-Min problem. Math. Program. 5 (1973) 169-188. | MR | Zbl
,[12] Topological existence and stability for Min-Sup problems. J. Math. Anal. Appl. 151 (1990) 164-180. | MR | Zbl
and ,[13] Semicontinuities of marginal functions in a sequential setting. Optimization 24 (1994) 241-252. | MR | Zbl
and ,[14] Approximate Solutions for Two-Level Optimization Problems, in Trends in Mathematical Optimization, International Series of Numerical Mathematics, edited by K. Hoffman, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe, Birkhäuser Verlag, Basel 84 (1988) 181-196. | MR | Zbl
and ,[15] On Strict -Solutions for Two-Level Optimization Problem, in Operations Research Proceedings of the International Conference on Operations Research 90, Vienna, edited by W. Buhler, G. Feichtinger, F. Hartl, F.J. Radermacher and P. Stahly, Springer-Verlag, Berlin (1992) 165-172. | MR | Zbl
and ,[16] Existence theorem of equilibrium points in Stackelberg games with constraints. Optimization 18 (1987) 857-866. | MR | Zbl
, and ,[17] Caractérisation des minima locaux des fonctions de la classe D.C., Technical Note, University of Dijon (1987).
,[18] An, Convex analysis approach to d.c. programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22 (1997) 289-355. | MR | Zbl
and[19] Convex analysis. Princeton University Press, Princeton, NJ (1970). | MR | Zbl
,[20] Necessary Conditions for Min-Max Problems and algorithms by a relaxation procedure. IEEE Transactions on Automatic Control: AC-25(1) (1980) 62-66. | MR | Zbl
and ,Cité par Sources :