In this paper we establish necessary as well as sufficient conditions for a given feasible point to be a global minimizer of smooth minimization problems with mixed variables. These problems, for instance, cover box constrained smooth minimization problems and bivalent optimization problems. In particular, our results provide necessary global optimality conditions for difference convex minimization problems, whereas our sufficient conditions give easily verifiable conditions for global optimality of various classes of nonconvex minimization problems, including the class of difference of convex and quadratic minimization problems. We discuss numerical examples to illustrate the optimality conditions
Mots-clés : nonconvex optimization, global optimization, optimality conditions, discrete constraints, box constraints, difference of convex functions, quadratic minimization
@article{RO_2008__42_3_361_0, author = {Jeyakumar, Vaithilingam and Srisatkunarajah, Sivakolundu and Huy, Nguyen Quang}, title = {Unified global optimality conditions for smooth minimization problems with mixed variables}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {361--370}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ro:2008019}, mrnumber = {2444492}, zbl = {1153.90544}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2008019/} }
TY - JOUR AU - Jeyakumar, Vaithilingam AU - Srisatkunarajah, Sivakolundu AU - Huy, Nguyen Quang TI - Unified global optimality conditions for smooth minimization problems with mixed variables JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2008 SP - 361 EP - 370 VL - 42 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2008019/ DO - 10.1051/ro:2008019 LA - en ID - RO_2008__42_3_361_0 ER -
%0 Journal Article %A Jeyakumar, Vaithilingam %A Srisatkunarajah, Sivakolundu %A Huy, Nguyen Quang %T Unified global optimality conditions for smooth minimization problems with mixed variables %J RAIRO - Operations Research - Recherche Opérationnelle %D 2008 %P 361-370 %V 42 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2008019/ %R 10.1051/ro:2008019 %G en %F RO_2008__42_3_361_0
Jeyakumar, Vaithilingam; Srisatkunarajah, Sivakolundu; Huy, Nguyen Quang. Unified global optimality conditions for smooth minimization problems with mixed variables. RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 3, pp. 361-370. doi : 10.1051/ro:2008019. http://archive.numdam.org/articles/10.1051/ro:2008019/
[1] Global optimality conditions for quadratic optimization problems with binary constraints. SIAM J. Optim. 11 (2000) 179-188. | MR | Zbl
and ,[2] The quadratic assignment problem: theory and algorithms. Kluwer Academic Publishers (1998). | MR | Zbl
,[3] Quadratic programming with box constraints, in Developments in global optimization, edited by Bomze I. et al. Kluwer Acad. Publ., Dordrecht (1997) 73-93. | MR | Zbl
, and ,[4] Optimization in computational chemistry and molecular biology: Local and global approaches. Kluwer Academic Publishers (2000). | MR | Zbl
and ,[5] Sufficient global optimality conditions for multi-extremal smooth minimization problems with bounds and linear matrix inequality constraints, The ANZIAM J. 47 (2006) 439-450. | MR | Zbl
, and ,[6] Globally minimizing smooth functions with simple constraints: Necessary, and sufficient optimality conditions (submitted).
, and ,[7] Global minimization of difference of quadratic and convex functions over box or binary constraints, To appear in Optimization Letters, DOI: 10.1007/s11590-007-0053-6 (2008). | MR
and ,[8] Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints. J. Global Optim. 36 (2006) 461-468. | MR | Zbl
, and ,[9] Nonconvex quadratic minimization with quadratic constraints: Global optimality conditions. Math. Program. 110 (2007) 521-541. | MR
, and ,[10] 0/1 optimization and a decomposition approach for the placement of electronic circuits. Math. Program. 63 (1994) 257-279. | MR | Zbl
, , and ,[11] Iterative convex quadratic approximation for global optimization in protein docking, Comput. Optim. Appl. 32 (2005) 285-297. | MR | Zbl
, and ,[12] Computational aspects of quadratic zero-one programming, Computing 45 (1990) 131-144. | MR | Zbl
and ,[13] Sufficient global optimality conditions for bivalent quadratic optimization, J. Optim. Theor. Appl. 122 (2004) 433-440. | MR | Zbl
,[14] On semidefinite bounds for maximization of a non-convex quadratic objective over unit ball. RAIRO Oper. Res. 40 (2006) 253-265. | Numdam | MR
and ,[15] Sufficient conditions for global optimality of bivalent nonconvex quadratic programs with inequality constraints. J. Optim. Theor. Appl. 133 (2007) 123-130. | MR | Zbl
, , ,Cité par Sources :