@article{CML_2009__1_2_225_0, author = {Mukhin, Evgenii and Tarasov, Vitaly and Varchenko, Aleksandr}, title = {On reality property of {Wronski} maps}, journal = {Confluentes Mathematici}, pages = {225--247}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {1}, number = {2}, year = {2009}, doi = {10.1142/S1793744209000092}, language = {en}, url = {http://archive.numdam.org/articles/10.1142/S1793744209000092/} }
TY - JOUR AU - Mukhin, Evgenii AU - Tarasov, Vitaly AU - Varchenko, Aleksandr TI - On reality property of Wronski maps JO - Confluentes Mathematici PY - 2009 SP - 225 EP - 247 VL - 1 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - http://archive.numdam.org/articles/10.1142/S1793744209000092/ DO - 10.1142/S1793744209000092 LA - en ID - CML_2009__1_2_225_0 ER -
%0 Journal Article %A Mukhin, Evgenii %A Tarasov, Vitaly %A Varchenko, Aleksandr %T On reality property of Wronski maps %J Confluentes Mathematici %D 2009 %P 225-247 %V 1 %N 2 %I World Scientific Publishing Co Pte Ltd %U http://archive.numdam.org/articles/10.1142/S1793744209000092/ %R 10.1142/S1793744209000092 %G en %F CML_2009__1_2_225_0
Mukhin, Evgenii; Tarasov, Vitaly; Varchenko, Aleksandr. On reality property of Wronski maps. Confluentes Mathematici, Tome 1 (2009) no. 2, pp. 225-247. doi : 10.1142/S1793744209000092. http://archive.numdam.org/articles/10.1142/S1793744209000092/
[1] Yu. Berest and O. Chalykh, Calogero-Moser correspondence: Trigonometric case, preprint (2007) 1-15 .
[2] A. Chervov and D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence , arXiv:hep-th/0604128 .
[3] A. Eremenko and A. Gabrielov, Ann. Math. 155, 105 (2002), DOI: 10.2307/3062151 .
[4] A. Eremenko, Proc. Amer. Math. Soc. 134, 949 (2006), DOI: 10.1090/S0002-9939-05-08048-2 .
[5] P. Etingof, private communication .
[6] P. Etingof and V. Ginzburg, Invent. Math. 147, 243 (2002), DOI: 10.1007/s002220100171 .
[7] E. Horozov and M. Yakimov, The real loci of Calogero-Moser spaces and the Shapiro-Shapiro conjecture , arXiv:0710.5291 .
[8] P. P. Kulish and E. K. Sklyanin, Quantum Spectral Transform Method. Recent Developments, Lect. Notes in Phys. 151 (Springer, 1982) pp. 61-119.
[9] E. Mukhin, V. Tarasov and A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, to appear in Ann. Math , [math.AG/0512299] .
[10] E. Mukhin, V. Tarasov and A. Varchenko, J. Stat. Mech. 1 (2006).
[11] E. Mukhin, V. Tarasov and A. Varchenko, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007) pp. 1-31.
[12] E. Mukhin, V. Tarasov and A. Varchenko, Funct. Anal. Math. 1, 55 (2006).
[13] E. Mukhin, V. Tarasov and A. Varchenko, Adv. Math. 218, 216 (2008), DOI: 10.1016/j.aim.2007.11.022 .
[14] J. Ruffo, Y. Sivan, E. Soprunova and F. Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds , [math.AG/0507377] .
[15] F. Sottile, Algorithmic and Quantitative Real Algebraic Geometry (Piscataway, NJ, 2001), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 60 (Amer. Math. Soc., 2003) pp. 139-179.
[16] G. Wilson, Invent. Math. 133, 1 (1998), DOI: 10.1007/s002220050237 .
Cité par Sources :