Polynomial dynamic and lattice orbits in S-arithmetic homogeneous spaces
Confluentes Mathematici, Tome 2 (2010) no. 1, pp. 1-35.
Publié le :
DOI : 10.1142/S1793744210000120
@article{CML_2010__2_1_1_0,
     author = {Guilloux, Antonin},
     title = {Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces},
     journal = {Confluentes Mathematici},
     pages = {1--35},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {2},
     number = {1},
     year = {2010},
     doi = {10.1142/S1793744210000120},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744210000120/}
}
TY  - JOUR
AU  - Guilloux, Antonin
TI  - Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces
JO  - Confluentes Mathematici
PY  - 2010
SP  - 1
EP  - 35
VL  - 2
IS  - 1
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744210000120/
DO  - 10.1142/S1793744210000120
LA  - en
ID  - CML_2010__2_1_1_0
ER  - 
%0 Journal Article
%A Guilloux, Antonin
%T Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces
%J Confluentes Mathematici
%D 2010
%P 1-35
%V 2
%N 1
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744210000120/
%R 10.1142/S1793744210000120
%G en
%F CML_2010__2_1_1_0
Guilloux, Antonin. Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces. Confluentes Mathematici, Tome 2 (2010) no. 1, pp. 1-35. doi : 10.1142/S1793744210000120. http://archive.numdam.org/articles/10.1142/S1793744210000120/

[1] Y. Benoist and H. Oh, Effective equidistribution of S-integral points on symmetric varieties , arXiv:0706.1621 .

[2] A. Borel , Linear Algebraic Groups , 2nd edn. , Graduate Texts in Mathematics 126 ( Springer-Verlag , 1991 ) .

[3] S. G. Dani and S. Raghavan, Israel J. Math. 36, 300 (1980), DOI: 10.1007/BF02762053 .

[4] S. R. Dani, Ergod. Th. Dynam. Syst. 2, 139 (1982).

[5] J. Denef, Séminaire de Théorie des Nombres, Paris 1983-84, Progr. Math. 59 (Birkhäuser, 1985) pp. 25-47.

[6] J. S. Ellenberg and A. Venkatesh, Inven. Math. 171, 257 (2008), DOI: 10.1007/s00222-007-0077-7 .

[7] A. Eskin, S. Mozes and N. Shah, Geom. Funct. Anal. 7, 48 (1997), DOI: 10.1007/PL00001616 .

[8] A. Gorodnik, Duke Math. J. 122, 549 (2004), DOI: 10.1215/S0012-7094-04-12234-1 .

[9] A. Gorodnik and H. Oh, Rational points on homogeneous varieties and equidistribution of adelic periods, preprint .

[10] A. Gorodnik and B. Weiss, Distribution of lattice orbits on homogeneous varieties, Geom. Funct. Anal. to appear .

[11] A. Guilloux, Équidistribution dans les espaces homogènes, PhD thesis, Université Paris 11 Orsay, 2007 .

[12] D. Kleinbock and G. Tomanov, Comment. Math. Helv. 82, 519 (2007).

[13] F. Ledrappier, C. R. Acad. Sci. 329, 61 (1999).

[14] F. Ledrappier and M. Pollicott, Bull. Braz. Math. Soc. 36, 143 (2005).

[15] G. A. Margulis , Discrete Subgroups of Semisimple Lie Groups ( Springer , 1991 ) .

[16] F. Maucourant, Homogeneous asymptotic limits of Haar measures of semisimple Lie groups and their lattices, Duke Math. J. to appear .

[17] A. Nogueira, Indag. Math. 13, 103 (2002), DOI: 10.1016/S0019-3577(02)90009-1 .

[18] V. Platonov and A. Rapinchuk , Algebraic Groups and Number Theory ( Academic Press , 1994 ) .

[19] N. A. Shah, Proc. Indian Acad. Sci. (Math. Sci.) 106, 105 (1996), DOI: 10.1007/BF02837164 .

[20] J. Tits, Proc. Symp. Pure Math. 33 (1979) pp. 20-70.

[21] G. Tomanov, Adv. Stud. Pure Math. 26, 265 (2000).

Cité par Sources :