A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger–Virasoro group
Confluentes Mathematici, Tome 2 (2010) no. 2, pp. 217-263.
Publié le :
DOI : 10.1142/S1793744210000168
@article{CML_2010__2_2_217_0,
     author = {Unterberger, J\'er\'emie},
     title = {A classification of periodic time-dependent generalized harmonic oscillators using a {Hamiltonian} action of the {Schr\"odinger{\textendash}Virasoro} group},
     journal = {Confluentes Mathematici},
     pages = {217--263},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {2},
     number = {2},
     year = {2010},
     doi = {10.1142/S1793744210000168},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744210000168/}
}
TY  - JOUR
AU  - Unterberger, Jérémie
TI  - A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger–Virasoro group
JO  - Confluentes Mathematici
PY  - 2010
SP  - 217
EP  - 263
VL  - 2
IS  - 2
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744210000168/
DO  - 10.1142/S1793744210000168
LA  - en
ID  - CML_2010__2_2_217_0
ER  - 
%0 Journal Article
%A Unterberger, Jérémie
%T A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger–Virasoro group
%J Confluentes Mathematici
%D 2010
%P 217-263
%V 2
%N 2
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744210000168/
%R 10.1142/S1793744210000168
%G en
%F CML_2010__2_2_217_0
Unterberger, Jérémie. A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger–Virasoro group. Confluentes Mathematici, Tome 2 (2010) no. 2, pp. 217-263. doi : 10.1142/S1793744210000168. http://archive.numdam.org/articles/10.1142/S1793744210000168/

[1] M. Abramowitz et al. , Handbook of Mathematical Functions ( Harri Deutsch , 1984 ) .

[2] J. Balog, L. Fehér and L. Palla, Int. J. Mod. Phys. A 13, 315 (1998), DOI: 10.1142/S0217751X98000147.

[3] F. A. Berezin and M. A. Shubin , The Schrödinger Equation ( Kluwer , 1991 ) .

[4] A. Bohm et al. , The Geometric Phase in Quantum Systems , Texts and Monographs in Physics ( Springer , 2003 ) .

[5] S. Bouquet and H. R. Lewis, J. Math. Phys. 37, 5509 (1996), DOI: 10.1063/1.531708.

[6] S. Bouquetet al., J. Math. Phys. 33, 591 (1992).

[7] A. Erdelyi et al. , Higher Transcendental Functions ( McGraw-Hill , 1953 ) .

[8] I. M. Gelfand and G. E. Shilov , Generalized Functions 1 ( Academic Press , 1964 ) .

[9] H. Goldstein , Classical Mechanics ( Addison-Wesley , 1959 ) .

[10] I. S. Gradshteyn and I. M. Ryzhik , Table of Integrals, Series, and Products ( Academic Press , 1980 ) .

[11] M. F. Guasti and H. Moya-Cessa, J. Phys. A 36, 2069 (2003), DOI: 10.1088/0305-4470/36/8/305.

[12] M. F. Guasti and H. Moya-Cessa, Phys. Lett. A 311, 1 (2003).

[13] L. Guieu, Sur la géométrie des orbites de la représentation coadjointe du groupe de Bott–Virasoro, PhD thesis, Université Aix-Marseille I, 1994 .

[14] L. Guieu and C. Roger, L’Algèbre et le Groupe de Virasoro: Aspects Géométriques et Algébriques, Généralisations (CRM, 2007) .

[15] V. Guillemin and S. Sternberg , Symplectic Techniques in Physics ( Cambridge Univ. Press , 1984 ) .

[16] G. Hagedorn, Ann. Phys. 269, 77 (1998).

[17] G. Hagedorn, M. Loss and J. Slawny, J. Phys. A 19, 521 (1986), DOI: 10.1088/0305-4470/19/4/013.

[18] M. Henkel, J. Stat. Phys. 75, 1023 (1994), DOI: 10.1007/BF02186756.

[19] M. Henkel, Nucl. Phys. B 641, 405 (2002), DOI: 10.1016/S0550-3213(02)00540-0.

[20] M. Henkel, Phase-ordering kinetics: Ageing and local scale-invariance , cond-mat/0503739 .

[21] A. Joye, Geometric and mathematical aspects of the adiabatic theorem of quantum mechanics, PhD thesis, Ecole Polytechnique Fédérale de Lausanne (1992) .

[22] B. Khesin and R. Wendt , The Geometry of Infinite-Dimensional Lie Groups , Series of Modern Surveys in Mathematics 51 ( Springer , 2008 ) .

[23] A. A. Kirillov, The Geometry of Moments, Lecture Notes in Math. 970 (Springer, 1982) pp. 101–123.

[24] V. F. Lazutkin and T. F. Pankratova, Funct. Anal. Appl. 9, 306 (1975), DOI: 10.1007/BF01075876.

[25] P. G. L. Leach and H. R. Lewis, J. Math. Phys. 23, 2371 (1982).

[26] H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969), DOI: 10.1063/1.1664991.

[27] W. Magnus and S. Winkler , Hill’s Equation ( John Wiley and Sons , 1966 ) .

[28] U. Niederer, Helv. Phys. Act. 47, 167 (1974).

[29] P. B. E. Padilla, Ermakov–Lewis dynamic invariants with some applications, Master Thesis, Institutot de Fisica (Guanajuato, Mexico), available on , arXiv:math-ph/0002005 .

[30] J. R. Ray and J. L. Reid, Phys. Rev. A 26, 1042 (1982), DOI: 10.1103/PhysRevA.26.1042.

[31] C. Roger and J. Unterberger, Ann. Henri Poincaré 7, 1477 (2006), DOI: 10.1007/s00023-006-0289-1.

[32] M. Henkel and J. Unterberger, Nucl. Phys. B 660, 407 (2003).

Cité par Sources :