A remark on the subleading order in the asymptotics of the nonequilibrium emptiness formation probability
Confluentes Mathematici, Tome 2 (2010) no. 3, pp. 293-311.
Publié le :
DOI : 10.1142/S1793744210000193
@article{CML_2010__2_3_293_0,
     author = {Aschbacher, Walter H.},
     title = {A remark on the subleading order in the asymptotics of the nonequilibrium emptiness formation probability},
     journal = {Confluentes Mathematici},
     pages = {293--311},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {2},
     number = {3},
     year = {2010},
     doi = {10.1142/S1793744210000193},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744210000193/}
}
TY  - JOUR
AU  - Aschbacher, Walter H.
TI  - A remark on the subleading order in the asymptotics of the nonequilibrium emptiness formation probability
JO  - Confluentes Mathematici
PY  - 2010
SP  - 293
EP  - 311
VL  - 2
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744210000193/
DO  - 10.1142/S1793744210000193
LA  - en
ID  - CML_2010__2_3_293_0
ER  - 
%0 Journal Article
%A Aschbacher, Walter H.
%T A remark on the subleading order in the asymptotics of the nonequilibrium emptiness formation probability
%J Confluentes Mathematici
%D 2010
%P 293-311
%V 2
%N 3
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744210000193/
%R 10.1142/S1793744210000193
%G en
%F CML_2010__2_3_293_0
Aschbacher, Walter H. A remark on the subleading order in the asymptotics of the nonequilibrium emptiness formation probability. Confluentes Mathematici, Tome 2 (2010) no. 3, pp. 293-311. doi : 10.1142/S1793744210000193. http://archive.numdam.org/articles/10.1142/S1793744210000193/

[1] G. A. Abanov and F. Franchini, Phys. Lett. A 316, 342 (2003), DOI: 10.1016/j.physleta.2003.07.009.

[2] H. Araki, Publ. RIMS Kyoto Univ. 6, 385 (1968), DOI: 10.2977/prims/1195193913.

[3] H. Araki, Publ. RIMS Kyoto Univ. 6, 385 (1971), DOI: 10.2977/prims/1195193913.

[4] H. Araki, Publ. RIMS Kyoto Univ. 20, 277 (1984), DOI: 10.2977/prims/1195181608.

[5] H. Araki and T. G. Ho, Proc. Steklov Inst. Math. 228, 191 (2000).

[6] W. H. Aschbacher, Cont. Math. 447, 1 (2007).

[7] W. H. Aschbacher, Lett. Math. Phys. 79, 1 (2007), DOI: 10.1007/s11005-006-0115-1.

[8] W. H. Aschbacher and J. M. Barbaroux, J. Math. Phys. 48, 113302–1 (2007).

[9] W. H. Aschbacher and C. A. Pillet, J. Stat. Phys. 112, 1153 (2003), DOI: 10.1023/A:1024619726273.

[10] W. H. Aschbacheret al., Topics in Non-Equilibrium Quantum Statistical Mechanics, Lecture Notes in Mathematics 1882 (Springer, 2006) pp. 1–66.

[11] A. Böttcher and B. Silbermann , Introduction to Large Truncated Toeplitz Matrices ( Springer , 1999 ) .

[12] A. Böttcher and B. Silbermann , Analysis of Toeplitz Operators ( Springer , 2006 ) .

[13] F. Franchini and A. G. Abanov, J. Phys. A: Math. Gen. 38, 5069 (2005), DOI: 10.1088/0305-4470/38/23/002.

[14] T. Matsui and Y. Ogata, Rev. Math. Phys. 15, 905 (2003), DOI: 10.1142/S0129055X03001850.

[15] D. Ruelle, J. Stat. Phys. 98, 57 (2000), DOI: 10.1023/A:1018618704438.

[16] M. Shiroishi, M. Takahashi and Y. Nishiyama, J. Phys. Soc. Jap. 70, 3535 (2001).

[17] A. V. Sologubenkoet al., Phys. Rev. B 64, 054412-1 (2001), DOI: 10.1103/PhysRevB.64.054412.

[18] J. R. Stembridge, Adv. Math. 83, 96 (1990), DOI: 10.1016/0001-8708(90)90070-4.

[19] H. Widom, Ind. Univ. Math. J. 21, 277 (1971), DOI: 10.1512/iumj.1971.21.21022.

Cité par Sources :