@article{CML_2011__3_2_159_0, author = {Halpern, Laurence and Petit-Bergez, Sabrina and Rauch, Jeffrey B.}, title = {The analysis of matched layers}, journal = {Confluentes Mathematici}, pages = {159--236}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {2}, year = {2011}, doi = {10.1142/S1793744211000291}, language = {en}, url = {http://archive.numdam.org/articles/10.1142/S1793744211000291/} }
TY - JOUR AU - Halpern, Laurence AU - Petit-Bergez, Sabrina AU - Rauch, Jeffrey B. TI - The analysis of matched layers JO - Confluentes Mathematici PY - 2011 SP - 159 EP - 236 VL - 3 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - http://archive.numdam.org/articles/10.1142/S1793744211000291/ DO - 10.1142/S1793744211000291 LA - en ID - CML_2011__3_2_159_0 ER -
%0 Journal Article %A Halpern, Laurence %A Petit-Bergez, Sabrina %A Rauch, Jeffrey B. %T The analysis of matched layers %J Confluentes Mathematici %D 2011 %P 159-236 %V 3 %N 2 %I World Scientific Publishing Co Pte Ltd %U http://archive.numdam.org/articles/10.1142/S1793744211000291/ %R 10.1142/S1793744211000291 %G en %F CML_2011__3_2_159_0
Halpern, Laurence; Petit-Bergez, Sabrina; Rauch, Jeffrey B. The analysis of matched layers. Confluentes Mathematici, Tome 3 (2011) no. 2, pp. 159-236. doi : 10.1142/S1793744211000291. http://archive.numdam.org/articles/10.1142/S1793744211000291/
[1] S. Abarbanel and D. Gottlieb, A mathematical analysis of the PML method, J. Com- put. Phys. 134 (1997) 357–363.
[2] S. Abarbanel and D. Gottlieb, On the construction and analysis of absorbing layers in cem, Appl. Numer. Math. 27 (1998) 331–340.
[3] D. Appelö, T. Hagström and G. Kreiss, Perfectly matched layers for hyperbolic sys- tems: General formulation, well-posedness and stability, SIAM J. Appl. Math. 67 (2006) 1–23.
[4] C. Bardos and J. Rauch, Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer. Math. Soc. (1982) 377–408.
[5] E. Bécache, S. Fauqueux and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, J. Comput. Phys. 188 (2003) 399–433.
[6] M. D. Bronshtein, Smoothness of roots of polynomials depending on parameters, Sib. Mat. Zh. 20 (1979) 493–501, in Russian [English transl., Siberian Math. J. 20 (1980) 347–352].
[7] M. D. Bronshtein, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moskov. Mat. Obshch. 41 (1980) 83–99, in Russian [English transl., Trans. Moscow. Math. Soc., No. 1 (1982) 87–103.
[8] J. Chazarain and A. Piriou, Introduction à la Théorie des Équations aux Dérivées Partielles Linéaires (Gauthier-Villars, 1981).
[9] W. C. Chew and W. H. Weedon, A 3d perfectly matched medium from modified Maxwell’s equations with stretched coordinates, IEEE Microwave and Optical Tech. Lett. 17 (1995) 599–604.
[10] J. Diaz and P. Joly, A time domain analysis of PML models in acoustics, Comput. Methods Appl. Mech. Engrg. 195 (2006) 3820–3853.
[11] R. Hersh, Mixed problems in several variables, J. Math. Mech. 12 (1963) 317–334.
[12] J. S. Hesthaven, On the analysis and construction of perfectly matched layers for the linearized Euler equations, J. Comput. Phys. 142 (1998) 129–147.
[13] L. Hörmander, The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients (Springer-Verlag, 2005).
[14] F. Q Hu, On absorbing boundary conditions of linearized Euler equations by a per- fectly matched layer, J. Comput. Phys. 129 (1996) 201–219.
[15] F. Q Hu, A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables, J. Comput. Phys. 173 (2001) 455–480.
[16] M. Israeli and S. A. Orszag, Approximation of radiation boundary conditions, J. Comput. Phys. 41 (1981) 115–135.
[17] J. L. Joly, G. Métivier and J. Rauch, Hyperbolic domains of determinacy and Hamilton–Jacobi equations, J. Hyp. Part. Differential Eqns. 2 (2005) 713–744.
[18] K. Kasahara, On weak well-posedness of mixed problems for hyperbolic systems, Publ. Res. Inst. Math. Sci. 6 (1970/71) 503–514.
[19] H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier–Stokes Equations (Academic Press, 1989).
[20] P. A. Mazet, S. Paintandre and A. Rahmouni, Interprétation dispersive du milieu PML de Bérenger, C. R. Math. Acad. Sci. Paris 327 (1998) 59–64.
[21] L. Métivier, Utilisation des équations Euler–PML en milieu hétérogène borné pour la résolution d’un problème inverse en géophysique, in ESAIM Proc, CANUM 2008, (EDP Sciences, 2009), pp. 156–170.
[22] J. Métral and O. Vacus, Caractère bien posé du problème de Cauchy pour le système de Bérenger, C. R. Math. Acad. Sci. Paris 328 (1999) 847–852.
[23] T. Nishitani, Energy inequality for non strictly hyperbolic operators in Gevrey class, J. Math. Kyoto Univ. 23 (1983) 739–773.
[24] T. Nishitani, Sur les équations hyperboliques à coefficients hölderiens en t et de classe Gevrey en x, Bull. Sci. Math. 107 (1983) 113–138.
[25] S. Petit-Bergez, Problèmes faiblement bien posés: Discrétisation et applications, Ph.D. thesis, Université Paris 13, 2006. http://tel.archives-ouvertes.fr/tel-00545794/fr/.
[26] P. G. Petropoulos, Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell’s equations in rectangular, cylindrical and spherical coordinates, SIAM J. Appl. Math. 60 (2000) 1037–1058.
[27] L. Zhao, P. G. Petropoulos and A. C. Cangellaris, A reflectionless sponge layer absorb- ing boundary condition for the solution of Maxwell’s equations with high-order stag- gered finite difference schemes, J. Comput. Phys. 139 (1998) 184–208.
[28] A. Rahmouni, Un modèle PML bien posé pour l’élastodynamique anisotrope, C. R. Math. Acad. Sci. Paris 338 (2004) 963–968.
[29] C. M. Rappaport, Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space, IEEE Trans. Magn. 32 (1996) 968–974.
[30] M. Taylor, Pseudodifferential Operators (Princeton Univ. Press, 1981).
Cité par Sources :