Hydro-elastic waves in a cochlear model: Numerical simulations and an analytically reduced model
Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 523-541.
Publié le :
DOI : 10.1142/S1793744211000382
@article{CML_2011__3_3_523_0,
     author = {Holmes, William R. and Jolly, Michael and Rubinstein, Jacob},
     title = {Hydro-elastic waves in a cochlear model: {Numerical} simulations and an analytically reduced model},
     journal = {Confluentes Mathematici},
     pages = {523--541},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {3},
     year = {2011},
     doi = {10.1142/S1793744211000382},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744211000382/}
}
TY  - JOUR
AU  - Holmes, William R.
AU  - Jolly, Michael
AU  - Rubinstein, Jacob
TI  - Hydro-elastic waves in a cochlear model: Numerical simulations and an analytically reduced model
JO  - Confluentes Mathematici
PY  - 2011
SP  - 523
EP  - 541
VL  - 3
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744211000382/
DO  - 10.1142/S1793744211000382
LA  - en
ID  - CML_2011__3_3_523_0
ER  - 
%0 Journal Article
%A Holmes, William R.
%A Jolly, Michael
%A Rubinstein, Jacob
%T Hydro-elastic waves in a cochlear model: Numerical simulations and an analytically reduced model
%J Confluentes Mathematici
%D 2011
%P 523-541
%V 3
%N 3
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744211000382/
%R 10.1142/S1793744211000382
%G en
%F CML_2011__3_3_523_0
Holmes, William R.; Jolly, Michael; Rubinstein, Jacob. Hydro-elastic waves in a cochlear model: Numerical simulations and an analytically reduced model. Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 523-541. doi : 10.1142/S1793744211000382. http://archive.numdam.org/articles/10.1142/S1793744211000382/

[1] J. B. Allen and M. M. Sondhi, Cochlear macromechanics: Time domain solutions, J. Acoust. Soc. Am. 66 (1979) 123–132.

[2] G. V. Bekesy, Experiments in Hearing (McGraw-Hill, 1960).

[3] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edn. (Dover, 2001).

[4] E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea, J. Comput. Phys. 191 (2003) 377–391.

[5] J. Keener and J. Sneyd, Mathematical Physiology (Springer, 2001).

[6] J. B. Keller and J. C. Neu, Asymptotic analysis of a viscous cochlear model, J. Acoust. Soc. Am. 77 (1985) 2107–2110.

[7] Y. Kim and J. Xin, A two-dimensional nonlinear nonlocal feed-forward cochlear mode and time domain computation of multitone interactions, Multiscale Model. Simul. 4 (2005) 664–690.

[8] L. Landau and E. Lifshitz, Theory of Elasticity, Course of Theoretical Physics, Vol. 7, 3rd edn. (Elsevier, 1986).

[9] J. Lighthill, Energy flow in the cochlea, J. Fluid Mech. 106 (1981) 149–213.

[10] K.-M. Lim and C. R. Steele, A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method, Hearing Res. 170 (2002) 190–205.

[11] D. Manoussaki, R. S. Chadwick, D. R. Ketten, J. Arruda, E. K. Dimitriadis and J. T. O’Malley, The influence of cochlear shape on low-frequency hearing, PNAS 105 (2008) 6162–6166.

[12] S. T. Neely, Finite difference solution of a two-dimensional mathematical model of the cochlea, J. Acoust. Soc. Am. 69 (1981) 1386–1393.

[13] C. S. Peskin, Partial Differential Equations in Biology. Courant Inst. Lecture Notes. (Courant Institute of Mathematical Sciences, 1975–76).

[14] L. C. Peterson and B. P. Bogert, A dynamical theory of the cochlea, J. Acoust. Soc. Am. 22 (1950) 369–381.

[15] J. O. Pickles, An Introduction to the Physiology of Hearing, 3rd edn. (Emerald, 2008).

[16] J. Rubinstein and M. Schatzman, Variational problems in multiply connected thin strips I: Basic estimates and convergence of the Laplacian spectrum, Arch. Rational Mech. Anal. 160 (2001) 271–308.

[17] C. R. Steele, Behavior of the basilar membrane with pure-tone excitation, J. Acoust. Soc. Am. 55 (1974) 148–162.

[18] J. W. Stephenson, Single cell discretizations of order two and four for biharmonic problems, J. Comput. Phys. 55 (1984) 65–80.

[19] J. Xin, Y. Qi and L. Deng, Time domain computation of a nonlinear nonlocal cochlear model with applications to multitone interaction in hearing, Comm. Math. Sci. 1 (2003) 211–227.

Cité par Sources :