Affine Nash groups over real closed fields
Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 577-585.
Publié le :
DOI : 10.1142/S179374421100045X
@article{CML_2011__3_4_577_0,
     author = {Hrushovski, Ehud and Pillay, Anand},
     title = {Affine {Nash} groups over real closed fields},
     journal = {Confluentes Mathematici},
     pages = {577--585},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {4},
     year = {2011},
     doi = {10.1142/S179374421100045X},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S179374421100045X/}
}
TY  - JOUR
AU  - Hrushovski, Ehud
AU  - Pillay, Anand
TI  - Affine Nash groups over real closed fields
JO  - Confluentes Mathematici
PY  - 2011
SP  - 577
EP  - 585
VL  - 3
IS  - 4
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S179374421100045X/
DO  - 10.1142/S179374421100045X
LA  - en
ID  - CML_2011__3_4_577_0
ER  - 
%0 Journal Article
%A Hrushovski, Ehud
%A Pillay, Anand
%T Affine Nash groups over real closed fields
%J Confluentes Mathematici
%D 2011
%P 577-585
%V 3
%N 4
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S179374421100045X/
%R 10.1142/S179374421100045X
%G en
%F CML_2011__3_4_577_0
Hrushovski, Ehud; Pillay, Anand. Affine Nash groups over real closed fields. Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 577-585. doi : 10.1142/S179374421100045X. http://archive.numdam.org/articles/10.1142/S179374421100045X/

[1] M. Artin and B. Mazur, On periodic points, Ann. Math. 81 (1965) 82–99.

[2] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry (Springer, 1998).

[3] A. Conversano and A. Pillay, Connected components of definable groups and o-minimality I, preprint 2011. http://www.maths.leeds.ac.uk/∼pillay/

[4] L. van den Dries, Tame Topology and o-Minimal Structures, LMS Lecture Note Series, Vol. 248 (Cambridge Univ. Press, 1998).

[5] E. Hrushovski and A. Pillay, Groups definable in local fields and pseudofinite fields, Israel J. Math. 85 (1994) 203–262.

[6] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Alg. 53 (1988) 239–255.

[7] M. Shiota, Nash Manifolds, Lecture Notes in Mathematics, Vol. 1269 (Springer, 1987).

[8] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations (Prentice-Hall, 1974).

Cité par Sources :