@article{CML_2011__3_4_617_0, author = {Briani, Ariela and Chambolle, Antonin and Novaga, Matteo and Orlandi, Giandomenico}, title = {On the gradient flow of a one-homogeneous functional}, journal = {Confluentes Mathematici}, pages = {617--635}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {4}, year = {2011}, doi = {10.1142/S1793744211000461}, language = {en}, url = {http://archive.numdam.org/articles/10.1142/S1793744211000461/} }
TY - JOUR AU - Briani, Ariela AU - Chambolle, Antonin AU - Novaga, Matteo AU - Orlandi, Giandomenico TI - On the gradient flow of a one-homogeneous functional JO - Confluentes Mathematici PY - 2011 SP - 617 EP - 635 VL - 3 IS - 4 PB - World Scientific Publishing Co Pte Ltd UR - http://archive.numdam.org/articles/10.1142/S1793744211000461/ DO - 10.1142/S1793744211000461 LA - en ID - CML_2011__3_4_617_0 ER -
%0 Journal Article %A Briani, Ariela %A Chambolle, Antonin %A Novaga, Matteo %A Orlandi, Giandomenico %T On the gradient flow of a one-homogeneous functional %J Confluentes Mathematici %D 2011 %P 617-635 %V 3 %N 4 %I World Scientific Publishing Co Pte Ltd %U http://archive.numdam.org/articles/10.1142/S1793744211000461/ %R 10.1142/S1793744211000461 %G en %F CML_2011__3_4_617_0
Briani, Ariela; Chambolle, Antonin; Novaga, Matteo; Orlandi, Giandomenico. On the gradient flow of a one-homogeneous functional. Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 617-635. doi : 10.1142/S1793744211000461. http://archive.numdam.org/articles/10.1142/S1793744211000461/
[1] D. R. Adams and L. I. Hedberg, Functions Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, Vol. 314 (Springer, 1996).
[2] W. K. Allard, Total variation regularization for image denoising. III. Examples, SIAM J. Imaging Sci. 2 (2009) 532–568.
[3] F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets in RN , Math. Ann. 332 (2005) 329–366.
[4] S. Baldo, R. Jerrard, G. Orlandi and H. M. Soner, Convergence of Ginzburg–Landau functionals in 3-d superconductivity, arXiv:1102.4650.
[5] G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN , J. Differ- ential Equations 184 (2002) 475–525.
[6] Yu. K. Belyaev, Continuity and Hölder’s conditions for sample functions of stationary Gaussian processes, in Proc. 4th Berkeley Symp. Math. Statist. and Prob., Vol. II (University of California Press, 1961), pp. 22–33.
[7] M. Bonforte and A. Figalli, Total variation flow and sign fast diffusion in one dimen- sion, arXiv:1107.2153v2.
[8] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (North-Holland, 1973).
[9] L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998) 383–402.
[10] L. Caffarelli and A. Friedman, Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J. 28 (1979) 53–70.
[11] C. M. Elliott and V. Janovsk´y, A variational inequality approach to Hele–Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981) 93–107.
[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, 1983).
[13] B. Gustafsson, Applications of variational inequalities to a moving boundary problem for Hele–Shaw flows, SIAM J. Math. Anal. 16 (1985) 279–300.
[14] K. Kielak, P. B. Mucha and P. Rybka, Almost classical solutions to the total variation flow, arXiv:1106.5369v1.
[15] C. I. Kim and A. Mellet, Homogenization of a Hele–Shaw problem in periodic and random media, Arch. Rat. Mech. Anal. 194 (2009) 507–530.
[16] D. Kinderlehrer and L. Nirenberg, The smoothness of the free boundary in the one phase Stefan problem, Comm. Pure Appl. Math. 31 (1978) 257–282.
[17] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equa- tions, University Lecture Series, Vol. 22 (Amer. Math. Soc., 2001).
[18] W. Ring, Structural properties of solutions to total variation regularization problems, M2AN Math. Model. Numer. Anal. 34 (2000) 799–810.
[19] J. F. Rodrigues, Variational Methods in the Stefan Problem, Lecture Notes in Math- ematics, Vol. 1584 (Springer, 1994), pp. 147–212.
[20] E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, Vol. 70 (Birkhäuser, 2007).
Cité par Sources :