The multiplicative property characterizes p and L p norms
Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 637-647.
Publié le :
DOI : 10.1142/S1793744211000485
@article{CML_2011__3_4_637_0,
     author = {Aubrun, Guillaume and Nechita, Ion},
     title = {The multiplicative property characterizes $\ell _p$ and $L_p$ norms},
     journal = {Confluentes Mathematici},
     pages = {637--647},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {4},
     year = {2011},
     doi = {10.1142/S1793744211000485},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744211000485/}
}
TY  - JOUR
AU  - Aubrun, Guillaume
AU  - Nechita, Ion
TI  - The multiplicative property characterizes $\ell _p$ and $L_p$ norms
JO  - Confluentes Mathematici
PY  - 2011
SP  - 637
EP  - 647
VL  - 3
IS  - 4
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744211000485/
DO  - 10.1142/S1793744211000485
LA  - en
ID  - CML_2011__3_4_637_0
ER  - 
%0 Journal Article
%A Aubrun, Guillaume
%A Nechita, Ion
%T The multiplicative property characterizes $\ell _p$ and $L_p$ norms
%J Confluentes Mathematici
%D 2011
%P 637-647
%V 3
%N 4
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744211000485/
%R 10.1142/S1793744211000485
%G en
%F CML_2011__3_4_637_0
Aubrun, Guillaume; Nechita, Ion. The multiplicative property characterizes $\ell _p$ and $L_p$ norms. Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 637-647. doi : 10.1142/S1793744211000485. http://archive.numdam.org/articles/10.1142/S1793744211000485/

[1] J. Aczél and Z. Dar´oczy, On Measures of Information and their Characterizations, Mathematics in Science and Engineering, Vol. 115 (Academic Press, 1975), xii+234 pp.

[2] D. Alspach and E. Odell, Lp spaces, in Handbook of the Geometry of Banach Spaces, Vol. I (North-Holland, 2001), pp. 123–159.

[3] G. Aubrun and I. Nechita, Catalytic majorization and lp norms, Comm. Math. Phys. 278(1) (2008) 133–144.

[4] G. Aubrun and I. Nechita, Stochastic domination for iterated convolutions and cat- alytic majorization, Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 611–625.

[5] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Vol. 169 (Springer- Verlag, 1997).

[6] F. Bohnenblust, An axiomatic characterization of Lp-spaces, Duke Math. J. 6 (1940) 627–640.

[7] H. Brézis, Analyse Fonctionnelle: Théorie et Applications (Masson, 1983) (in French).

[8] R. Cerf and P. Petit, A short proof of Cramér’s theorem, to appear in Amer. Math. Monthly (2011).

[9] C. Fern´andez-Gonz´alez, C. Palazuelos and D. Pérez-Garc´ıa, The natural rearrange- ment invariant structure on tensor products, J. Math. Anal. Appl. 343 (2008) 40–47.

[10] E. Howe, A new proof of Erd˝os’ theorem on monotone multiplicative functions, Amer. Math. Monthly 93 (1986) 593–595.

[11] J.-L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. (2) 104 (1976) 1–29.

[12] G. Kuperberg, The capacity of hybrid quantum memory, IEEE Trans. Inform. Th. 49 (2003) 1465–1473.

[13] T. Leinster, A multiplicative characterization of the power means, to appear in Bull. London Math. Soc. (2011).

[14] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. With an Appendix by M. Gromov, Lecture Notes in Mathematics, Vol. 1200 (Springer-Verlag, 1986).

Cité par Sources :