Equivariant cohomology and current algebras
Confluentes Mathematici, Tome 4 (2012) no. 2, article no. 1250001.
Publié le :
DOI : 10.1142/S1793744212500016
@article{CML_2012__4_2_A1_0,
     author = {Alekseev, Anton and \v{S}evera, Pavol},
     title = {Equivariant cohomology and current algebras},
     journal = {Confluentes Mathematici},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {4},
     number = {2},
     year = {2012},
     doi = {10.1142/S1793744212500016},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744212500016/}
}
TY  - JOUR
AU  - Alekseev, Anton
AU  - Ševera, Pavol
TI  - Equivariant cohomology and current algebras
JO  - Confluentes Mathematici
PY  - 2012
VL  - 4
IS  - 2
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744212500016/
DO  - 10.1142/S1793744212500016
LA  - en
ID  - CML_2012__4_2_A1_0
ER  - 
%0 Journal Article
%A Alekseev, Anton
%A Ševera, Pavol
%T Equivariant cohomology and current algebras
%J Confluentes Mathematici
%D 2012
%V 4
%N 2
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744212500016/
%R 10.1142/S1793744212500016
%G en
%F CML_2012__4_2_A1_0
Alekseev, Anton; Ševera, Pavol. Equivariant cohomology and current algebras. Confluentes Mathematici, Tome 4 (2012) no. 2, article no. 1250001. doi : 10.1142/S1793744212500016. http://archive.numdam.org/articles/10.1142/S1793744212500016/

[1] A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000) 135–172.

[2] H. Cartan, Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, in Colloque de topologie (espaces fibrés) (Bruxelles, 1950), pp. 15–27 (in French).

[3] H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, in Colloque de topologie (espaces fibrés) (Bruxelles, 1950), pp. 57–71 (in French).

[4] M. Cederwall, G. Ferretti, B. E. W. Nilsson and A. Westerberg, Higher-dimensional loop algebras, non-abelian extensions and p-branes, Nucl. Phys. B 424 (1994) 97.

[5] V. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz 1 (1989) 114–148.

[6] L. Faddeev, Operator anomaly for the Gauss law, Phys. Lett. B 145 (1984) 81–84.

[7] L. Faddeev and S. Shatashvili, Algebraic and Hamiltonian methods in the theory of nonabelian anomalies, Teoret. Mat. Fiz. 60 (1984) 206–217 (in Russian).

[8] V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) 203–272.

[9] V. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Mathematics Past and Present (Springer, 1999).

[10] S. Hu and B. Uribe, Extended manifolds and extended equivariant cohomology, J. Geom. Phys. 59 (2009) 104–131.

[11] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble) 46 (1996) 1241–1272.

[12] A. Losev, G. Moore, N. Nekrasov and S. Shatashvili, Central extensions of gauge groups revisited, Selecta Math. 4 (1998) 117–123.

[13] J. Mickelsson, Chiral anomalies in even and odd dimensions, Commun. Math. Phys. 97 (1985) 361–370.

[14] J. Mickelsson, Current Algebras and Groups (Plenum Press, 1989).

[15] C. Vizman, The path group construction of Lie group extensions, J. Geom. Phys. 58 (2008) 860–873.

Cité par Sources :