@article{CML_2012__4_2_A1_0, author = {Alekseev, Anton and \v{S}evera, Pavol}, title = {Equivariant cohomology and current algebras}, journal = {Confluentes Mathematici}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {4}, number = {2}, year = {2012}, doi = {10.1142/S1793744212500016}, language = {en}, url = {http://archive.numdam.org/articles/10.1142/S1793744212500016/} }
TY - JOUR AU - Alekseev, Anton AU - Ševera, Pavol TI - Equivariant cohomology and current algebras JO - Confluentes Mathematici PY - 2012 VL - 4 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - http://archive.numdam.org/articles/10.1142/S1793744212500016/ DO - 10.1142/S1793744212500016 LA - en ID - CML_2012__4_2_A1_0 ER -
%0 Journal Article %A Alekseev, Anton %A Ševera, Pavol %T Equivariant cohomology and current algebras %J Confluentes Mathematici %D 2012 %V 4 %N 2 %I World Scientific Publishing Co Pte Ltd %U http://archive.numdam.org/articles/10.1142/S1793744212500016/ %R 10.1142/S1793744212500016 %G en %F CML_2012__4_2_A1_0
Alekseev, Anton; Ševera, Pavol. Equivariant cohomology and current algebras. Confluentes Mathematici, Tome 4 (2012) no. 2, article no. 1250001. doi : 10.1142/S1793744212500016. http://archive.numdam.org/articles/10.1142/S1793744212500016/
[1] A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000) 135–172.
[2] H. Cartan, Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, in Colloque de topologie (espaces fibrés) (Bruxelles, 1950), pp. 15–27 (in French).
[3] H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, in Colloque de topologie (espaces fibrés) (Bruxelles, 1950), pp. 57–71 (in French).
[4] M. Cederwall, G. Ferretti, B. E. W. Nilsson and A. Westerberg, Higher-dimensional loop algebras, non-abelian extensions and p-branes, Nucl. Phys. B 424 (1994) 97.
[5] V. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz 1 (1989) 114–148.
[6] L. Faddeev, Operator anomaly for the Gauss law, Phys. Lett. B 145 (1984) 81–84.
[7] L. Faddeev and S. Shatashvili, Algebraic and Hamiltonian methods in the theory of nonabelian anomalies, Teoret. Mat. Fiz. 60 (1984) 206–217 (in Russian).
[8] V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) 203–272.
[9] V. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Mathematics Past and Present (Springer, 1999).
[10] S. Hu and B. Uribe, Extended manifolds and extended equivariant cohomology, J. Geom. Phys. 59 (2009) 104–131.
[11] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble) 46 (1996) 1241–1272.
[12] A. Losev, G. Moore, N. Nekrasov and S. Shatashvili, Central extensions of gauge groups revisited, Selecta Math. 4 (1998) 117–123.
[13] J. Mickelsson, Chiral anomalies in even and odd dimensions, Commun. Math. Phys. 97 (1985) 361–370.
[14] J. Mickelsson, Current Algebras and Groups (Plenum Press, 1989).
[15] C. Vizman, The path group construction of Lie group extensions, J. Geom. Phys. 58 (2008) 860–873.
Cité par Sources :