A note on canonical bases and one-based types in supersimple theories
Confluentes Mathematici, Tome 4 (2012) no. 3, article no. 1250004.
Publié le :
DOI : 10.1142/S1793744212500041
@article{CML_2012__4_3_A2_0,
     author = {Chatzidakis, Zo\'e},
     title = {A note on canonical bases and one-based types in supersimple theories},
     journal = {Confluentes Mathematici},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {4},
     number = {3},
     year = {2012},
     doi = {10.1142/S1793744212500041},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744212500041/}
}
TY  - JOUR
AU  - Chatzidakis, Zoé
TI  - A note on canonical bases and one-based types in supersimple theories
JO  - Confluentes Mathematici
PY  - 2012
VL  - 4
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744212500041/
DO  - 10.1142/S1793744212500041
LA  - en
ID  - CML_2012__4_3_A2_0
ER  - 
%0 Journal Article
%A Chatzidakis, Zoé
%T A note on canonical bases and one-based types in supersimple theories
%J Confluentes Mathematici
%D 2012
%V 4
%N 3
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744212500041/
%R 10.1142/S1793744212500041
%G en
%F CML_2012__4_3_A2_0
Chatzidakis, Zoé. A note on canonical bases and one-based types in supersimple theories. Confluentes Mathematici, Tome 4 (2012) no. 3, article no. 1250004. doi : 10.1142/S1793744212500041. http://archive.numdam.org/articles/10.1142/S1793744212500041/

[1] N. Bourbaki, XI, Algèbre Chap. 5, Corps Commutatifs (Hermann, 1959).

[2] E. Bouscaren, Proof of the Mordell–Lang conjecture for function fields, in Model Theory and Algebraic Geometry, Lecture Notes in Math., Vol. 1696 (Springer, 1998), pp. 177–196.

[3] Z. Chatzidakis, C. Hardouin and M. Singer, On the definitions of difference Galois groups, in Model Theory with Applications to Algebra and Analysis, I, eds. Z. Chatzi- dakis, H. D. Macpherson, A. Pillay and A. J. Wilkie (Cambridge Univ. Press, 2008), pp. 73–110.

[4] Z. Chatzidakis and E. Hrushovski, Model theory of difference fields, Trans. Amer. Math. Soc. 351 (1999) 2997–3071.

[5] Z. Chatzidakis and E. Hrushovski, Difference fields and descent in algebraic dynamics, I, J. IMJ, 7 (2008) 653–686.

[6] Z. Chatzidakis and E. Hrushovski, Difference fields and descent in algebraic dynamics, II, J. IMJ, 7 (2008) 687–704.

[7] Z. Chatzidakis, E. Hrushovski and Y. Peterzil, Model theory of difference fields, II: Periodic ideals and the trichotomy in all characteristics, Proc. London Math. Soc. 85 (2002) 257–311.

[8] R. M. Cohn, Difference Algebra, Tracts in Mathematics, Vol. 17 (Interscience, 1965).

[9] E. Hrushovski, private communication, November 2011.

[10] E. Hrushovski, D. Palac´ın and A. Pillay, On the canonical base property, arXiv:1205.5981.

[11] P. B. Juhlin, Fine structure of dependence in superstable theories of finite rank, Ph.D. thesis, University of Notre Dame, March 2010.

[12] D. Marker, Model Theory: An Introduction (Springer, 2002).

[13] R. Moosa, A model-theoretic counterpart to Moishezon morphisms, in Models, Logics, and Higher-Dimensional Categories: A Tribute to the Work of Mihaly Makkai, eds. B. Hart, T. Kucera, A. Pillay, P. Scott and R. Seely, Centre de Recherches Mathema- tiques Proceedings & Lecture Notes, Vol. 53 (Amer. Math. Soc., 2011), pp. 177–188.

[14] R. Moosa and A. Pillay, On canonical bases and internality criteria, Illinois J. Math. 52 (2008) 901–917.

[15] D. Palacin and F. O. Wagner, Ample thoughts, arXiv:1104.0179, to appear in Notre Dame J. Formal Logic.

[16] A. Pillay, Model-theoretic consequences of a theorem of Campana and Fujiki, Fund. Math. 174 (2002) 187–192.

[17] A. Pillay and M. Ziegler, Jet spaces of varieties over differential and difference fields, Selecta Math. (N.S.) 9 (2003) 579–599.

[18] F. Wagner, Simple Theories (Kluwer, 2000).

[19] F. Wagner, A note on one-basedness, J. Symb. Logic 69 (2004) 34–38.

Cité par Sources :