Interval exchange transformation extension of a substitution dynamical system
Confluentes Mathematici, Tome 4 (2012) no. 4, article no. 1250005.
Publié le :
DOI : 10.1142/S1793744212500053
@article{CML_2012__4_4_A1_0,
     author = {Bressaud, Xavier and Jullian, Yann},
     title = {Interval exchange transformation extension of a substitution dynamical system},
     journal = {Confluentes Mathematici},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {4},
     number = {4},
     year = {2012},
     doi = {10.1142/S1793744212500053},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744212500053/}
}
TY  - JOUR
AU  - Bressaud, Xavier
AU  - Jullian, Yann
TI  - Interval exchange transformation extension of a substitution dynamical system
JO  - Confluentes Mathematici
PY  - 2012
VL  - 4
IS  - 4
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744212500053/
DO  - 10.1142/S1793744212500053
LA  - en
ID  - CML_2012__4_4_A1_0
ER  - 
%0 Journal Article
%A Bressaud, Xavier
%A Jullian, Yann
%T Interval exchange transformation extension of a substitution dynamical system
%J Confluentes Mathematici
%D 2012
%V 4
%N 4
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744212500053/
%R 10.1142/S1793744212500053
%G en
%F CML_2012__4_4_A1_0
Bressaud, Xavier; Jullian, Yann. Interval exchange transformation extension of a substitution dynamical system. Confluentes Mathematici, Tome 4 (2012) no. 4, article no. 1250005. doi : 10.1142/S1793744212500053. http://archive.numdam.org/articles/10.1142/S1793744212500053/

[1] P. Arnoux, J. Bernat and X. Bressaud, Geometrical models for substitutions, Exper- imental Math. 20 (2011) 97–127.

[2] P. Arnoux, V. Berthé, A. Hilion and A. Siegel, Fractal representation of the attractive lamination of an automorphism of the free group, Ann. Inst. Fourier 56 (2006) 2161– 2212.

[3] P. Arnoux and S. Ito, Pisot substitutions and rauzy fractals, Bull. Belg. Math. Soc. 8 (2001) 181–207.

[4] P. Arnoux, Un exemple de semi-conjugaison entre un échange d’intervalles et une translation sur le tore, Bull. Soc. Math. France 116 (1988) 489–500.

[5] P. Arnoux and J.-C. Yoccoz, Construction de difféomorphismes pseudo-Anosov, Comp. Acad. Sci., Sér. I 292 (1981) 75–78.

[6] M. Bestvina and M. Feighn, Outer limits, 1994, preprint.

[7] M. Bestvina and M. Handel, Train-tracks and automorphisms of free groups, Ann. Math. 135 (1992) 1–51.

[8] M. Boshernitzan and I. Kornfeld, Interval translation mappings, Ergodic Theory Dynam. Systems 15 (1995) 821–832.

[9] T. Coulbois and A. Hilion, Rips induction: Index of the dual lamination of an R-tree, arXiv:1002.0972.

[10] T. Coulbois and A. Hilion, Botany of irreducible automorphisms of free groups, Pacific J. Math. 256 (2012) 291–307.

[11] T. Coulbois, A. Hilion and M. Lustig, R-trees and laminations for free groups II: The dual lamination of an R-tree, J. London Math. Soc. 78 (2008) 737–754.

[12] T. Coulbois, A. Hilion and M. Lustig, R-trees, dual laminations, and compact systems of partial isometries, Math. Proc. Cambridge Phil. Soc. 147 (2009) 345–368.

[13] M. M. Cohen and M. Lustig, Very small group actions on R-trees and Dehn twist automorphisms, Topol. 34 (1995) 575–617.

[14] M. Culler and J. Morgan, Group actions on R-trees, Proc. London Math. Soc. 55 (1987) 571–604.

[15] T. Coulbois, Fractal trees for irreducible automorphisms of free groups, J. Mod. Dynam. 4 (2010) 359–391.

[16] V. Canterini and A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive, J. Th. Nombres Bordeaux 13 (2001) 353–369.

[17] V. Canterini and A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001) 5121–5144.

[18] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics (Cambridge Univ. Press, 1985).

[19] A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les Surfaces, Astérisque, Vols. 66–67 (Soc. Math. France, 1979).

[20] D. Gaboriau, A. Jaeger, G. Levitt and M. Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425–452.

[21] D. Gaboriau and G. Levitt, The rank of action on R-trees, Ann. Scient. Ec. Norm. Sup. (4) 28 (1995) 549–570.

[22] M. Handel and L. Mosher, Axes in outer space, 2006.

[23] M. Handel and L. Mosher, Parageometric outer automorphisms of free groups, Trans. Amer. Math. Soc. 359 (2007) 3153–3183.

[24] Y. Jullian, Représentation géométrique des systèmes dynamiques substitutifs par sub- stitutions d’arbre, PhD thesis, Université de la Méditerranée, 2009.

[25] Y. Jullian, Construction du cœur compact d’un arbre réel par substitution d’arbre, to appear in Ann. Inst. Fourier, arXiv:1002.3933.

[26] Y. Jullian, Explicit computation of the index of a positive automorphism of the free group, arXiv:1012.3267.

[27] Y. Jullian, Positive automorphisms for interval exchange transformations, arXiv:1107.2430.

[28] I. Kapovich and M. Lustig, Invariant laminations for irreducible automorphisms of free groups, arXiv:1104.1265v2.

[29] G. Levitt and M. Lustig, Irreducible automorphisms of Fn have north–south dynamics on compactified outer-space, J. Inst. Math. Jussieu 2 (2003) 59–72.

[30] R. Daniel Mauldin and S. C. Williams, Hausdorff dimension in graph directed con- structions, Trans. Amer. Math. Soc. 309 (1988) 811–829.

[31] N. Pytheas Fogg, Arithmetics and Combinatorics, Lecture Notes in Mathematics, Vol. 1794, Substitutions in Dynamics (Springer-Verlag, 2002), eds. V. Berthé, S. Fer- enczi, C. Mauduit and A. Siegel.

[32] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Mathematics, Vol. 1294 (Springer-Verlag, 1987).

[33] G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982) 147–178.

[34] M. Viana, Dynamics of Interval Exchange Maps and Teichmüller Flows (IMPA, 2005 and 2007).

[35] K. Vogtmann, Automorphisms of free groups and outer space, Geometriæ Dedicata 94 (2002) 1–31.

[36] J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: An introduc- tion, in Frontiers in Number Theory, Physics and Geometry 1 (Springer, 2006).

Cité par Sources :