Invariance principles for random walks conditioned to stay positive
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 1, pp. 170-190.

Soit S n une marche aléatoire dont la loi est dans le domaine d’attraction d’une loi stable 𝒴, i.e. il existe une suite de réels positifs (a n ) telle que S n /a n converge en loi vers 𝒴. Nous montrons que le processus renormalisé (S nt /a n ,t0), une fois conditionné à rester positif, converge en loi (au sens fonctionnel) vers le processus de Lévy stable de loi 𝒴 conditionné à rester positif. Sous certaines hypothèses supplémentaires, nous montrons un principe d’invariance pour cette marche aléatoire tuée lorsqu’elle quitte la demi-droite positive et conditionnée à mourir en 0.

Let S n be a random walk in the domain of attraction of a stable law 𝒴, i.e. there exists a sequence of positive real numbers (a n ) such that S n /a n converges in law to 𝒴. Our main result is that the rescaled process (S nt /a n ,t0), when conditioned to stay positive, converges in law (in the functional sense) towards the corresponding stable Lévy process conditioned to stay positive. Under some additional assumptions, we also prove a related invariance principle for the random walk killed at its first entrance in the negative half-line and conditioned to die at zero.

DOI : 10.1214/07-AIHP119
Classification : 60G18, 60G51, 60B10
Mots-clés : random walk, stable law, Lévy process, conditioning to stay positive, invariance principle
@article{AIHPB_2008__44_1_170_0,
     author = {Caravenna, Francesco and Chaumont, Lo{\"\i}c},
     title = {Invariance principles for random walks conditioned to stay positive},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {170--190},
     publisher = {Gauthier-Villars},
     volume = {44},
     number = {1},
     year = {2008},
     doi = {10.1214/07-AIHP119},
     mrnumber = {2451576},
     zbl = {1175.60029},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/07-AIHP119/}
}
TY  - JOUR
AU  - Caravenna, Francesco
AU  - Chaumont, Loïc
TI  - Invariance principles for random walks conditioned to stay positive
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2008
SP  - 170
EP  - 190
VL  - 44
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/07-AIHP119/
DO  - 10.1214/07-AIHP119
LA  - en
ID  - AIHPB_2008__44_1_170_0
ER  - 
%0 Journal Article
%A Caravenna, Francesco
%A Chaumont, Loïc
%T Invariance principles for random walks conditioned to stay positive
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2008
%P 170-190
%V 44
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/07-AIHP119/
%R 10.1214/07-AIHP119
%G en
%F AIHPB_2008__44_1_170_0
Caravenna, Francesco; Chaumont, Loïc. Invariance principles for random walks conditioned to stay positive. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 1, pp. 170-190. doi : 10.1214/07-AIHP119. http://archive.numdam.org/articles/10.1214/07-AIHP119/

L. Alili and R. A. Doney. Wiener-Hopf factorization revisited and some applications. Stoc. Stoc. Rep. 66 (1999) 87-102. | MR | Zbl

J. Bertoin. Lévy Processes. Cambridge University Press, 1996. | MR | Zbl

J. Bertoin and R. A. Doney. On conditioning a random walk to stay nonnegative. Ann. Probab. 22 (1994) 2152-2167. | MR | Zbl

N. H. Bingham, C. H. Goldie and J. L. Teugels. Regular Variation. Cambridge University Press, 1989. | MR | Zbl

P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | MR | Zbl

E. Bolthausen. On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 (1976) 480-485. | MR | Zbl

A. Bryn-Jones and R. A. Doney. A functional central limit theorem for random walks conditional to stay non-negative. J. London Math. Soc. (2) 74 (2006) 244-258. | MR | Zbl

F. Caravenna. A local limit theorem for random walks conditioned to stay positive. Probab. Theory Related Fields 133 (2005) 508-530. | MR | Zbl

F. Caravenna, G. Giacomin and L. Zambotti. Sharp asymptotic behavior for wetting models in (1+1)-dimension. Elect. J. Probab. 11 (2006) 345-362. | MR | Zbl

J.-D. Deuschel, G. Giacomin and L. Zambotti. Scaling limits of equilibrium wetting models in (1+1)-dimension. Probab. Theory Related Fields 132 (2005) 471-500. | MR | Zbl

L. Chaumont. Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 (1996) 39-54. | MR | Zbl

L. Chaumont. Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121 (1997) 377-403. | MR | Zbl

C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres XII-XVI. Théorie du potentiel associée à une résolvante. Théorie des processus de Markov, 2nd edition, 1417. Hermann, Paris, 1987. | MR | Zbl

R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 (1985) 351-360. | MR | Zbl

R. A. Doney and P. E. Greenwood. On the joint distribution of ladder variables of random walks. Probab. Theory Related Fields 94 (1993) 457-472. | MR | Zbl

R. A. Doney. Spitzer's condition and ladder variables in random walks. Probab. Theory Related Fields 101 (1995) 577-580. | MR | Zbl

R. A. Doney. One-sided local large deviation and renewal theorem in the case of infinite mean. Probab. Theory Related Fields 107 (1997) 451-465. | MR | Zbl

T. Duquesne and J. F. Le Gall. Lévy processes and spatial branching processes. Astérisque 281 (2002). | Numdam | MR | Zbl

S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. Wiley, New York, 1986. | MR | Zbl

W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edition. Wiley, New York, 1971. | MR | Zbl

A. Garsia and J. Lamperti. A discrete renewal theorem with infinite mean. Comm. Math. Helv. 37 (1963) 221-234. | MR | Zbl

G. Giacomin. Random Polymer Models. Imperial College Press, World Scientific, 2007. | MR | Zbl

P. E. Greenwood, E. Omey and J. L. Teugels. Harmonic renewal measures and bivariate domains of attraction in fluctuation theory. Z. Wahrsch. Verw. Gebiete 61 (1982) 527-539. | MR | Zbl

D. L. Iglehart. Functional central limit theorems for random walks conditioned to stay positive. Ann. Probab. 2 (1974) 608-619. | MR | Zbl

A. Lambert. The genealogy of continuous-state branching processes with immigration. Probab. Theory Related Fields 122 (2002) 42-70. | MR | Zbl

T. L. Liggett. An invariance principle for conditioned sums of independent random variables. J. Math. Mech. 18 (1968) 559-570. | MR | Zbl

A. V. Skorohod. Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2 (1957) 138-171. | MR | Zbl

Y. Velenik. Localization and Delocalization of Random Interfaces. Probab. Surv. 3 (2006) 112-169. | MR

Cité par Sources :