Cet article traite de l'homogénéisation d'une équation aux dérivées partielles en dimension un d'espace, avec des coefficients aléatoires stationnaires et mélangeants, en présence d'u terme d'ordre zéro fortement oscillant. Nous montrons qu'avec un choix convenable du facteur d'échelle de ce terme d'ordre zéro, les solutions du problème étudié convergent en loi, et nous décrivons le processus limite. On peut noter que la dynamique limite est elle aussi aléatoire.
This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.
Mots-clés : stochastic homogenization, random operators
@article{AIHPB_2008__44_3_519_0, author = {Iftimie, Bogdan and Pardoux, \'Etienne and Piatnitski, Andrey}, title = {Homogenization of a singular random one-dimensional {PDE}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {519--543}, publisher = {Gauthier-Villars}, volume = {44}, number = {3}, year = {2008}, doi = {10.1214/07-AIHP134}, mrnumber = {2451056}, zbl = {1172.74043}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/07-AIHP134/} }
TY - JOUR AU - Iftimie, Bogdan AU - Pardoux, Étienne AU - Piatnitski, Andrey TI - Homogenization of a singular random one-dimensional PDE JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 519 EP - 543 VL - 44 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/07-AIHP134/ DO - 10.1214/07-AIHP134 LA - en ID - AIHPB_2008__44_3_519_0 ER -
%0 Journal Article %A Iftimie, Bogdan %A Pardoux, Étienne %A Piatnitski, Andrey %T Homogenization of a singular random one-dimensional PDE %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 519-543 %V 44 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/07-AIHP134/ %R 10.1214/07-AIHP134 %G en %F AIHPB_2008__44_3_519_0
Iftimie, Bogdan; Pardoux, Étienne; Piatnitski, Andrey. Homogenization of a singular random one-dimensional PDE. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 3, pp. 519-543. doi : 10.1214/07-AIHP134. http://archive.numdam.org/articles/10.1214/07-AIHP134/
[1] Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland, Amsterdam, 1978. | MR | Zbl
, and .[2] Convergence of Probability Measures, Wiley, 1968. | MR | Zbl
.[3] Probability and Measures, 3d edition. Wiley, 1995. | MR | Zbl
.[4] Homogenization of random parabolic operator with large potential. Stochastic Process. Appl. 93 (2001) 57-85. | MR | Zbl
, and .[5] Singular homogenization with stationary in time and periodic in space coefficients. J. Funct. Anal. 231 (2006) 1-46. | MR | Zbl
, , and .[6] Markov Processes. Characterization and Convergence. Willey, New York, 1986. | MR | Zbl
and .[7] Dirichlet Forms and Symmetric Markov Processes. De Gruyter, 1994. | MR | Zbl
, and .[8] Equations différentielles stochastiques retrogrades réfléchies dans un convexe. Stochastics Stochastic Rep. 57 ( 1996) 111-128. | MR | Zbl
and .[9] Brownian Motion and Stochastic Calculus. Springer-Verlag, 1991. | MR | Zbl
and .[10] Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, 1990. | MR | Zbl
.[11] Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme divergence. Thèse, Université de Provence, 2000.
.[12] Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer-Verlag, Berlin, 1996. | Zbl
.[13] Stochastic calculus with anticipative integrands, Probab. Theory Related Fields 78 (1988) 535-581. | MR | Zbl
and ,[14] Homogenization of a nonlinear random parabolic PDE. Stochastics Process. Appl. 104 (2003) 1-27. | MR | Zbl
and .[15] Continuous Martingales and Brownian Motion. Springer, 1991. | MR | Zbl
and .[16] Diffusion semigroups corresponding to uniformly elliptic divergence form operator. In Séminaire de Probabilités XXII. Lectures Notes in Math. 1321 pp. 316-347. Springer, 1988. | Numdam | MR | Zbl
.Cité par Sources :