Determinantal transition kernels for some interacting particles on the line
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 6, pp. 1162-1172.

Nous trouvons les noyaux de transition de quatre systèmes markoviens de particules en interaction sur une ligne, en prouvant que chacun de ces noyaux s'entrelace avec un noyau du type de Karlin-McGregor. Tous les noyaux résultants héritent de la structure de déterminant de la formule de Karlin-McGregor et ont une forme similaire à celle du noyau de Schütz pour le processus d'exclusion simple totalement asymétrique.

We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin-McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin-McGregor formula, and have a similar form to Schütz's kernel for the totally asymmetric simple exclusion process.

DOI : 10.1214/07-AIHP176
Classification : 60J05, 60K35, 05E10, 05E05, 15A52
Mots-clés : interacting particle system, intertwining, Karlin-McGregor theorem, Markov transition kernel, Robinson-Schensted-Knuth correspondence, Schütz theorem, stochastic recursion, symmetric functions
@article{AIHPB_2008__44_6_1162_0,
     author = {Dieker, A. B. and Warren, J.},
     title = {Determinantal transition kernels for some interacting particles on the line},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1162--1172},
     publisher = {Gauthier-Villars},
     volume = {44},
     number = {6},
     year = {2008},
     doi = {10.1214/07-AIHP176},
     mrnumber = {2469339},
     zbl = {1181.60144},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/07-AIHP176/}
}
TY  - JOUR
AU  - Dieker, A. B.
AU  - Warren, J.
TI  - Determinantal transition kernels for some interacting particles on the line
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2008
SP  - 1162
EP  - 1172
VL  - 44
IS  - 6
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/07-AIHP176/
DO  - 10.1214/07-AIHP176
LA  - en
ID  - AIHPB_2008__44_6_1162_0
ER  - 
%0 Journal Article
%A Dieker, A. B.
%A Warren, J.
%T Determinantal transition kernels for some interacting particles on the line
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2008
%P 1162-1172
%V 44
%N 6
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/07-AIHP176/
%R 10.1214/07-AIHP176
%G en
%F AIHPB_2008__44_6_1162_0
Dieker, A. B.; Warren, J. Determinantal transition kernels for some interacting particles on the line. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 6, pp. 1162-1172. doi : 10.1214/07-AIHP176. http://archive.numdam.org/articles/10.1214/07-AIHP176/

[1] M. Alimohammadi, V. Karimipour and M. Khorrami. Exact solution of a one-parameter family of asymmetric exclusion processes. Phys. Rev. E 57 (1998) 6370-6376. | MR

[2] Yu. Baryshnikov. GUEs and queues. Probab. Theory Related Fields 119 (2001) 256-274. | MR | Zbl

[3] A. Borodin and P. L. Ferrari. Large time asymptotics of growth models on space-like paths I: PushASEP. Available at arXiv.org/abs/0707. 2813, 2007. | MR

[4] A. Borodin, P. L. Ferrari, M. Prähofer and T. Sasamoto. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055-1080. | MR | Zbl

[5] A. B. Dieker and J. Warren. Transition probabilities for series Jackson networks. Preprint, 2007.

[6] M. Draief, J. Mairesse and N. O'Connell. Queues, stores, and tableaux. J. Appl. Probab. 42 (2005) 1145-1167. | MR

[7] W. Fulton. Young Tableaux. Cambridge University Press, 1997. | MR | Zbl

[8] E. R. Gansner. Matrix correspondences of plane partitions. Pacific J. Math. 92 (1981) 295-315. | MR | Zbl

[9] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437-476. | MR | Zbl

[10] K. Johansson. A multi-dimensional Markov chain and the Meixner ensemble. Available at arXiv.org/abs/0707.0098, 2007.

[11] W. König. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385-447. | MR

[12] N. O'Connell. Conditioned random walks and the RSK correspondence. J. Phys. A 36 (2003) 3049-3066. | MR | Zbl

[13] N. O'Connell. A path-transformation for random walks and the Robinson-Schensted correspondence. Trans. Amer. Math. Soc. 355 (2003) 3669-3697. | MR | Zbl

[14] A. M. Povolotsky and V. B. Priezzhev. Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech. (2006) P07002.

[15] A. Rákos and G. Schütz. Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118 (2005) 511-530. | MR | Zbl

[16] A. Rákos and G. Schütz. Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates. Markov Process. Related Fields 12 (2006) 323-334. | MR | Zbl

[17] G. M. Schütz. Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88 (1997) 427-445. | MR | Zbl

[18] T. Seppäläinen. Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26 (1998) 1232-1250. | MR | Zbl

[19] R. P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge University Press, 1997. | MR | Zbl

[20] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University Press, 1999. | MR | Zbl

[21] C. A. Tracy and H. Widom. Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279 (2008) 815-844. | MR | Zbl

[22] J. Warren. Dyson's Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 (2007) 573-590. | MR | Zbl

Cité par Sources :