This paper deals with homogenization of second order divergence form parabolic operators with locally stationary coefficients. Roughly speaking, locally stationary coefficients have two evolution scales: both an almost constant microscopic one and a smoothly varying macroscopic one. The homogenization procedure aims to give a macroscopic approximation that takes into account the microscopic heterogeneities. This paper follows [Probab. Theory Related Fields (2009)] and improves this latter work by considering possibly degenerate diffusion matrices.
Nous étudions l'homogénéisation d'opérateurs paraboliques du second ordre sous forme divergence à coefficients localement stationnaires. Ces coefficients présentent deux échelles d'évolution: une évolution microscopique presque constante et une évolution macroscopique régulière. La théorie de l'homogénéisation consiste à donner une approximation macroscopique de l'opérateur initial qui tient compte des hétérogénéités microscopiques. Cet article fait suite à [Probab. Theory Related Fields (2009)] et généralise ce dernier en considérant des matrices de diffusion pouvant dégénérer.
Keywords: homogenization, random medium, degenerate diffusion, locally stationary environment
@article{AIHPB_2009__45_4_981_0, author = {Rhodes, R\'emi}, title = {Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {981--1001}, publisher = {Gauthier-Villars}, volume = {45}, number = {4}, year = {2009}, doi = {10.1214/08-AIHP190}, mrnumber = {2572160}, zbl = {1207.60029}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/08-AIHP190/} }
TY - JOUR AU - Rhodes, Rémi TI - Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 981 EP - 1001 VL - 45 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/08-AIHP190/ DO - 10.1214/08-AIHP190 LA - en ID - AIHPB_2009__45_4_981_0 ER -
%0 Journal Article %A Rhodes, Rémi %T Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 981-1001 %V 45 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/08-AIHP190/ %R 10.1214/08-AIHP190 %G en %F AIHPB_2009__45_4_981_0
Rhodes, Rémi. Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix. Annales de l'I.H.P. Probabilités et statistiques, Volume 45 (2009) no. 4, pp. 981-1001. doi : 10.1214/08-AIHP190. http://archive.numdam.org/articles/10.1214/08-AIHP190/
[1] Homogenization of a diffusion with locally periodic coefficients. In Séminaire de Probabilités XXXVIII 363-392. Lecture Notes in Math. 1857. Springer, Berlin, 2005. | MR | Zbl
and .[2] Asymptotic Methods in Periodic Media. North Holland, Amsterdam, 1978. | MR
, and .[3] Stochastic homogenization of quasilinear PDEs with a spatial degeneracy. Asymptot. Anal. 61 (2009) 61-90. | MR | Zbl
and .[4] Dirichlet Forms and Markov Processes. North-Holland, Amsterdam, 1980. | MR | Zbl
.[5] Homogenization of periodic linear degenerate PDEs. J. Funct. Anal. 255 2462-2487. | MR | Zbl
and .[6] Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaft 288. Springer, Berlin, 1987. | MR | Zbl
and .[7] Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994. | MR | Zbl
, and .[8] Controlled Diffusion Processes. Springer, New York, 1980. | MR | Zbl
.[9] Introduction to the Theory of (Nonsymmetric) Dirichlet Forms. Universitext. Springer, Berlin, 1992. | MR | Zbl
and .[10] Homogenization of diffusion processes in Random Fields. Cours de l'école doctorale, Ecole polytechnique, 1994. Available at http://www.ceremade.dauphine.fr/~olla/pubolla.html.
.[11] Homogenization of a bond diffusion in a locally ergodic random environment. Stochastic Process. Appl. 109 (2004) 317-326. | MR | Zbl
and .[12] On homogenization of space time dependent random flows. Stochastic Process. Appl. 117 (2007) 1561-1585. | MR | Zbl
.[13] Diffusion in a locally stationary random environment. Probab. Theory Related Fields 143 (2009) 545-568. | MR | Zbl
.[14] Diffusion semi-groups corresponding to uniformly elliptic divergence form operators. In Séminaires de Probabilités XXII 316-347. Lecture Notes in Math. 1321. Springer, Berlin, 1988. (Section B 35 (1999) 121-141.) | Numdam | MR | Zbl
.[15] Forward-Backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999) 121-141. | Numdam | MR | Zbl
.Cited by Sources: