In this paper, we establish a small time large deviation principle (small time asymptotics) for the two-dimensional stochastic Navier-Stokes equations driven by multiplicative noise, which not only involves the study of the small noise, but also the investigation of the effect of the small, but highly nonlinear, unbounded drifts.
Dans cet article, nous établissons un principe de grandes déviations en temps petit pour l'équation de Navier-Stokes bi-dimensionnelle stochastique conduite par un bruit multiplicatif. Celui-ci nécessite non seulement l'étude d'un bruit faible, mais aussi la compréhension des effets de dérives petites mais non bornées et non linéaires.
Keywords: stochastic Navier-Stokes equation, small time asymptotics, large deviation principle
@article{AIHPB_2009__45_4_1002_0, author = {Xu, Tiange and Zhang, Tusheng}, title = {On the small time asymptotics of the two-dimensional stochastic {Navier-Stokes} equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1002--1019}, publisher = {Gauthier-Villars}, volume = {45}, number = {4}, year = {2009}, doi = {10.1214/08-AIHP192}, mrnumber = {2572161}, zbl = {1196.60119}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/08-AIHP192/} }
TY - JOUR AU - Xu, Tiange AU - Zhang, Tusheng TI - On the small time asymptotics of the two-dimensional stochastic Navier-Stokes equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 1002 EP - 1019 VL - 45 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/08-AIHP192/ DO - 10.1214/08-AIHP192 LA - en ID - AIHPB_2009__45_4_1002_0 ER -
%0 Journal Article %A Xu, Tiange %A Zhang, Tusheng %T On the small time asymptotics of the two-dimensional stochastic Navier-Stokes equations %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 1002-1019 %V 45 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/08-AIHP192/ %R 10.1214/08-AIHP192 %G en %F AIHPB_2009__45_4_1002_0
Xu, Tiange; Zhang, Tusheng. On the small time asymptotics of the two-dimensional stochastic Navier-Stokes equations. Annales de l'I.H.P. Probabilités et statistiques, Volume 45 (2009) no. 4, pp. 1002-1019. doi : 10.1214/08-AIHP192. http://archive.numdam.org/articles/10.1214/08-AIHP192/
[1] Short time asymptotics of a certain infinite dimensional diffusion process. In Stochastic Analysis and Related Topics, VII (Kusadasi, 1998) 77-124. Progr. Probab. 48. Birkhäuser Boston, Boston, MA, 2001. | MR | Zbl
and .[2] On the small time asymptotics of diffusion processes on path groups. Potential Anal. 16 (2002) 67-78. | MR | Zbl
and .[3] Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local time. J. Funct. Anal. 49 (1982) 198-229. | MR | Zbl
and .[4] Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. | MR | Zbl
and .[5] On the Lp-norms of stochastic integrals and other martingales. Duke Math. J. 43 1976 697-704. | MR | Zbl
.[6] Large Deviations Techniques and Applications. Jones and Bartlett, Boston, 1993. | MR | Zbl
and .[7] On the small time behavior of Ornstein-Uhlenbeck processes with unbounded linear drifts. Probab. Theory Related Fields 114 (1999) 487-504. | MR | Zbl
and .[8] Martingale and stationary solution for stochastic Navier-Stokes equations. Probab. Theory Related Fields 102 (1995) 367-391. | MR | Zbl
and .[9] Dissipativity and invariant measures for stochastic Navier-Stokes equations. Nonlinear Differential Equations Appl. 1 (1994) 403-423. | MR | Zbl
.[10] A large deviation principle for 2D stochastic Navier-Stokes equation. Stochastic Process. Appl. 117 (2007) 904-927. | MR | Zbl
.[11] Ergodicity of the 2-D Navier-Stokes equation with degenerate stochastic forcing. Ann. of Math. (2) 164 (2006) 993-1032. | MR | Zbl
and .[12] Small-time Gaussian behaviour of symmetric diffusion semigroup. Ann. Probab. 31 (2003) 1254-1295. | MR | Zbl
and .[13] Global L2-solutions of stochastic Navier-Stokes equations. Ann. Probab. 33 (2005) 137-176. | MR | Zbl
and .[14] Large deviation for the two dimensional Navier-Stokes equations with multiplicative noise. Stochastic Process. Appl. 116 (2006) 1636-1659. | MR | Zbl
and .[15] Navier-Stokes Equations and Nonlinear Functional Analysis. Soc. Industrial Appl. Math., Philadelphia, PA, 1983. | MR | Zbl
.[16] Diffusion processes in small time intervals. Comm. Pure. Appl. Math. 20 (1967) 659-685. | MR | Zbl
.[17] On the small time asymptotics of diffusion processes on Hilbert spaces. Ann. Probab. 28 (2000) 537-557. | MR | Zbl
.Cited by Sources: