Milstein's type schemes for fractional SDEs
Annales de l'I.H.P. Probabilités et statistiques, Volume 45 (2009) no. 4, pp. 1085-1098.

Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.

On étudie la vitesse exacte de convergence de certains schémas d'approximation associés à des équations différentielles stochastiques scalaires dirigées par le mouvement brownien fractionnaire B. On utilise le comportement asymptotique des variations à poids de B, et la limite de l'erreur entre la solution et son approximation est calculée de façon explicite.

DOI: 10.1214/08-AIHP196
Classification: 60F15, 60G15, 60H05, 60H35
Keywords: fractional brownian motion, weighted power variations, stochastic differential equation, Milstein's type scheme, exact rate of convergence
@article{AIHPB_2009__45_4_1085_0,
     author = {Gradinaru, Mihai and Nourdin, Ivan},
     title = {Milstein's type schemes for fractional {SDEs}},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1085--1098},
     publisher = {Gauthier-Villars},
     volume = {45},
     number = {4},
     year = {2009},
     doi = {10.1214/08-AIHP196},
     mrnumber = {2572165},
     zbl = {1197.60070},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/08-AIHP196/}
}
TY  - JOUR
AU  - Gradinaru, Mihai
AU  - Nourdin, Ivan
TI  - Milstein's type schemes for fractional SDEs
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2009
SP  - 1085
EP  - 1098
VL  - 45
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/08-AIHP196/
DO  - 10.1214/08-AIHP196
LA  - en
ID  - AIHPB_2009__45_4_1085_0
ER  - 
%0 Journal Article
%A Gradinaru, Mihai
%A Nourdin, Ivan
%T Milstein's type schemes for fractional SDEs
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2009
%P 1085-1098
%V 45
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/08-AIHP196/
%R 10.1214/08-AIHP196
%G en
%F AIHPB_2009__45_4_1085_0
Gradinaru, Mihai; Nourdin, Ivan. Milstein's type schemes for fractional SDEs. Annales de l'I.H.P. Probabilités et statistiques, Volume 45 (2009) no. 4, pp. 1085-1098. doi : 10.1214/08-AIHP196. http://archive.numdam.org/articles/10.1214/08-AIHP196/

[1] J. M. Corcuera, D. Nualart and J. H. C. Woerner. Power variation of some integral fractional processes. Bernoulli 12 (2006) 713-735. | MR | Zbl

[2] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR | Zbl

[3] A. M. Davie. Differential equations driven by rough paths: An approach via discrete approximation. AMRX Appl. Math. Res. Express 2007 (2007) abm009, 1-40. | MR | Zbl

[4] M. Gradinaru and I. Nourdin. Approximation at first and second order of the m-variation of the fractional Brownian motion. Electron. J. Probab. 8 (2003) 1-26. | MR | Zbl

[5] M. Gradinaru, I. Nourdin, F. Russo and P. Vallois. m-order integrals and generalized Itô's formula; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781-806. | Numdam | MR | Zbl

[6] J. Jacod. Limit of random measures associated with the increments of a Brownian semimartingale. LPMA, preprint (revised version), 1994.

[7] R. Klein and E. Giné. On quadratic variation of processes with Gaussian increments. Ann. Probab. 3 (1975) 716-721. | MR | Zbl

[8] T. G. Kurtz and P. Protter. Wong-Zakai corrections, random evolutions and simulation schemes for SDEs. In Stochastic Analysis 331-346. Academic Press, Boston, MA, 1991. | MR | Zbl

[9] J. R. León and C. Ludeña. Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stochastic Process. Appl. 117 (2007) 271-296. | MR | Zbl

[10] S. J. Lin. Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121-140. | MR | Zbl

[11] T. J. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR | Zbl

[12] Y. Mishura and G. Shevchenko. The rate of convergence of Euler approximations for solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics. To appear. Available at arXiv:0705.1773. | MR | Zbl

[13] A. Neuenkirch. Optimal approximation of SDE's with additive fractional noise. J. Complexity 22 (2006) 459-475. | MR | Zbl

[14] A. Neuenkirch. Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Process. Appl. 118 (2008) 2294-2333. | MR | Zbl

[15] A. Neuenkirch and I. Nourdin. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871-899. | MR | Zbl

[16] I. Nourdin, D. Nualart, C. Tudor. Central and non-central limit theorem for weighted power variation of fractional Brownian motion, 2007. Available at arXiv:0710.5639.

[17] I. Nourdin. Schémas d'approximation associés à une équation différentialle dirigée par une fonction hölderienne; cas du mouvement brownien fractionnaire. C. R. Acad. Sci. Paris, Ser. I 340 (2005) 611-614. | MR | Zbl

[18] I. Nourdin. A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Sém. Probab. XLI (2008) 181-197. | MR | Zbl

[19] I. Nourdin and G. Peccati. Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2008) 1229-1256. | MR

[20] I. Nourdin and T. Simon. Correcting Newton-Côtes integrals by Lévy areas. Bernoulli 13 (2007) 695-711. | MR | Zbl

[21] D. Nualart and A. Rǎsçanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | MR | Zbl

[22] F. Russo and P. Vallois. Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 (1993) 403-421. | MR | Zbl

[23] D. Talay. Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9 (1983) 275-306. | MR | Zbl

[24] M. Zähle. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374. | MR | Zbl

Cited by Sources: