Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.
On étudie la vitesse exacte de convergence de certains schémas d'approximation associés à des équations différentielles stochastiques scalaires dirigées par le mouvement brownien fractionnaire B. On utilise le comportement asymptotique des variations à poids de B, et la limite de l'erreur entre la solution et son approximation est calculée de façon explicite.
Keywords: fractional brownian motion, weighted power variations, stochastic differential equation, Milstein's type scheme, exact rate of convergence
@article{AIHPB_2009__45_4_1085_0, author = {Gradinaru, Mihai and Nourdin, Ivan}, title = {Milstein's type schemes for fractional {SDEs}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1085--1098}, publisher = {Gauthier-Villars}, volume = {45}, number = {4}, year = {2009}, doi = {10.1214/08-AIHP196}, mrnumber = {2572165}, zbl = {1197.60070}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/08-AIHP196/} }
TY - JOUR AU - Gradinaru, Mihai AU - Nourdin, Ivan TI - Milstein's type schemes for fractional SDEs JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 1085 EP - 1098 VL - 45 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/08-AIHP196/ DO - 10.1214/08-AIHP196 LA - en ID - AIHPB_2009__45_4_1085_0 ER -
%0 Journal Article %A Gradinaru, Mihai %A Nourdin, Ivan %T Milstein's type schemes for fractional SDEs %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 1085-1098 %V 45 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/08-AIHP196/ %R 10.1214/08-AIHP196 %G en %F AIHPB_2009__45_4_1085_0
Gradinaru, Mihai; Nourdin, Ivan. Milstein's type schemes for fractional SDEs. Annales de l'I.H.P. Probabilités et statistiques, Volume 45 (2009) no. 4, pp. 1085-1098. doi : 10.1214/08-AIHP196. http://archive.numdam.org/articles/10.1214/08-AIHP196/
[1] Power variation of some integral fractional processes. Bernoulli 12 (2006) 713-735. | MR | Zbl
, and .[2] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR | Zbl
and .[3] Differential equations driven by rough paths: An approach via discrete approximation. AMRX Appl. Math. Res. Express 2007 (2007) abm009, 1-40. | MR | Zbl
.[4] Approximation at first and second order of the m-variation of the fractional Brownian motion. Electron. J. Probab. 8 (2003) 1-26. | MR | Zbl
and .[5] m-order integrals and generalized Itô's formula; the case of a fractional Brownian motion with any Hurst index. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 781-806. | Numdam | MR | Zbl
, , and .[6] Limit of random measures associated with the increments of a Brownian semimartingale. LPMA, preprint (revised version), 1994.
.[7] On quadratic variation of processes with Gaussian increments. Ann. Probab. 3 (1975) 716-721. | MR | Zbl
and .[8] Wong-Zakai corrections, random evolutions and simulation schemes for SDEs. In Stochastic Analysis 331-346. Academic Press, Boston, MA, 1991. | MR | Zbl
and .[9] Limits for weighted p-variations and likewise functionals of fractional diffusions with drift. Stochastic Process. Appl. 117 (2007) 271-296. | MR | Zbl
and .[10] Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 (1995) 121-140. | MR | Zbl
.[11] Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR | Zbl
.[12] The rate of convergence of Euler approximations for solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics. To appear. Available at arXiv:0705.1773. | MR | Zbl
and .[13] Optimal approximation of SDE's with additive fractional noise. J. Complexity 22 (2006) 459-475. | MR | Zbl
.[14] Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Process. Appl. 118 (2008) 2294-2333. | MR | Zbl
.[15] Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 20 (2007) 871-899. | MR | Zbl
and .[16] Central and non-central limit theorem for weighted power variation of fractional Brownian motion, 2007. Available at arXiv:0710.5639.
, , .[17] Schémas d'approximation associés à une équation différentialle dirigée par une fonction hölderienne; cas du mouvement brownien fractionnaire. C. R. Acad. Sci. Paris, Ser. I 340 (2005) 611-614. | MR | Zbl
.[18] A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. Sém. Probab. XLI (2008) 181-197. | MR | Zbl
.[19] Weighted power variations of iterated Brownian motion. Electron. J. Probab. 13 (2008) 1229-1256. | MR
and .[20] Correcting Newton-Côtes integrals by Lévy areas. Bernoulli 13 (2007) 695-711. | MR | Zbl
and .[21] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | MR | Zbl
and .[22] Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97 (1993) 403-421. | MR | Zbl
and .[23] Résolution trajectorielle et analyse numérique des équations différentielles stochastiques. Stochastics 9 (1983) 275-306. | MR | Zbl
.[24] Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374. | MR | Zbl
.Cited by Sources: