Notons D un domaine non borné dans ℝd avec d≥3. Nous montrons que si D contient un domaine uniforme non borné, alors le mouvement brownien réfléchi (RBM) sur ̅D est transient. Par ailleurs, supposons que le RBM X sur ̅D est transient et notons Y son changement de temps par une mesure de Revuz 1D(x)m(x) dx pour une fonction m strictement positive, continue et intégrable sur ̅D. Nous démontrons alors que si il existe un r>0 tel que D∖̅B̅(̅0̅,̅ ̅r̅) soit un domaine uniformément non borné, alors Y admet une unique extension en une diffusion symétrique qui n'est jamais tuée.
Let D be an unbounded domain in ℝd with d≥3. We show that if D contains an unbounded uniform domain, then the symmetric reflecting brownian motion (RBM) on ̅D is transient. Next assume that RBM X on ̅D is transient and let Y be its time change by Revuz measure 1D(x)m(x) dx for a strictly positive continuous integrable function m on ̅D. We further show that if there is some r>0 so that D∖̅B̅(̅0̅,̅ ̅r̅) is an unbounded uniform domain, then Y admits one and only one symmetric diffusion that genuinely extends it and admits no killings.
Mots clés : reflecting brownian motion, transience, time change, uniform domain, Sobolev space, BL function space, reflected Dirichlet space, harmonic function, diffusion extension
@article{AIHPB_2009__45_3_864_0, author = {Chen, Zhen-Qing and Fukushima, Masatoshi}, title = {On unique extension of time changed reflecting brownian motions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {864--875}, publisher = {Gauthier-Villars}, volume = {45}, number = {3}, year = {2009}, doi = {10.1214/08-AIHP301}, mrnumber = {2548508}, zbl = {1189.60141}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/08-AIHP301/} }
TY - JOUR AU - Chen, Zhen-Qing AU - Fukushima, Masatoshi TI - On unique extension of time changed reflecting brownian motions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 864 EP - 875 VL - 45 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/08-AIHP301/ DO - 10.1214/08-AIHP301 LA - en ID - AIHPB_2009__45_3_864_0 ER -
%0 Journal Article %A Chen, Zhen-Qing %A Fukushima, Masatoshi %T On unique extension of time changed reflecting brownian motions %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 864-875 %V 45 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/08-AIHP301/ %R 10.1214/08-AIHP301 %G en %F AIHPB_2009__45_3_864_0
Chen, Zhen-Qing; Fukushima, Masatoshi. On unique extension of time changed reflecting brownian motions. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 3, pp. 864-875. doi : 10.1214/08-AIHP301. http://archive.numdam.org/articles/10.1214/08-AIHP301/
[1] Étude et extensions du principe de Dirichlet. Ann. Inst. Fourier 3 (1953-1954) 371-419. | Numdam | MR | Zbl
.[2] On reflected Dirichlet spaces. Probab. Theory Related Fields 94 (1992) 135-162. | MR | Zbl
.[3] One-point extensions of symmetric Markov processes by darning. Probab. Theory Related Fields 141 (2008) 61-112. | MR | Zbl
and .[4] Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136 (1994) 1-15. | MR | Zbl
, and .[5] Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1953-1954) 305-370. | Numdam | MR | Zbl
and .[6] Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. | MR | Zbl
, and .[7] Poisson point processes attached to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 419-459. | Numdam | MR | Zbl
and .[8] Uniform, Sobolev extension and quasiconformal circle domains. J. Anal. Math. 57 (1991) 172-202. | MR | Zbl
and .[9] Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46 (1982) 80-147. | MR | Zbl
and .[10] Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 71-78. | MR | Zbl
.[11] Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin, 1992. | Zbl
and .[12] Sobolev Spaces. Springer, Berlin, 1985. | MR
.[13] Théorie des distributions I, II. Hermann, Paris, 1950, 1951. | MR | Zbl
.[14] Symmetric Markov Processes. Lecture Notes in Math. 426. Springer, Berlin, 1974. | MR | Zbl
.[15] Uniform domains. Tohoku Math. J. 40 (1988) 101-118. | MR | Zbl
.Cité par Sources :