Motivated by classical considerations from risk theory, we investigate boundary crossing problems for refracted Lévy processes. The latter is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More formally, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation
Motivé par des considérations classiques de la théorie du risque, nous étudions des problèmes de croisement de frontière par des processus de Lévy réfractés. Un processus de Lévy réfracté est un processus de Lévy dont la dynamique possède une dérive linéaire fixe. Plus formellement, un processus de Lévy réfracté est décrit par l'unique solution forte, si elle existe, de l'équation différentielle stochastique
Keywords: stochastic control, fluctuation theory, Lévy processes
@article{AIHPB_2010__46_1_24_0, author = {Kyprianou, A. E. and Loeffen, R. L.}, title = {Refracted {L\'evy} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {24--44}, publisher = {Gauthier-Villars}, volume = {46}, number = {1}, year = {2010}, doi = {10.1214/08-AIHP307}, mrnumber = {2641768}, zbl = {1201.60042}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/08-AIHP307/} }
TY - JOUR AU - Kyprianou, A. E. AU - Loeffen, R. L. TI - Refracted Lévy processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 24 EP - 44 VL - 46 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/08-AIHP307/ DO - 10.1214/08-AIHP307 LA - en ID - AIHPB_2010__46_1_24_0 ER -
Kyprianou, A. E.; Loeffen, R. L. Refracted Lévy processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 1, pp. 24-44. doi : 10.1214/08-AIHP307. http://archive.numdam.org/articles/10.1214/08-AIHP307/
[1] Controlled diffusion models for optimal dividend pay-out. Insurance Math. Econom. 20 (1997) 1-15. | MR | Zbl
and .[2] On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 17 (2007) 156-180. | MR | Zbl
, and .[3] Lévy processes with adaptable exponent. Preprint, 2007. | MR | Zbl
, and .[4] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
.[5] Smoothness of scale functions for spectrally negative Lévy processes. Preprint, 2008.
and .[6] Short sale restrictions, rally fears and option markets. Preprint, 2008.
and .[7] Risk processes perturbed by α-stable Lévy motion. Scand. Actuar. J. 1 (1998) 59-74. | MR | Zbl
.[8] On optimal dividends: From reflection to refraction. J. Comput. Appl. Math. 186 (2006) 4-22. | MR | Zbl
and .[9] On optimal dividend strategies in the compound Poisson model. N. Am. Actuar. J. 10 (2006) 76-93. | MR
and .[10] Optimal capital structure and endogenous default. Finance Stoch. 6 (2002) 237-263. | MR | Zbl
and .[11] Old and new examples of scale functions for spectrally negative Lévy processes, 2007. Available at arXiv:0801.0393v1.
and .[12] Ruin probabilities and decompositions for general perturbed risk processes. Ann. Appl. Probab. 14 (2004) 1378-1397. | MR | Zbl
, , and .[13] Ruin probabilities for competing claim processes. J. Appl. Probab. 41 (2004) 679-690. | MR | Zbl
, , and .[14] Limit Theorems for Stochastic Processes. Springer, Berlin, 2003. | MR | Zbl
and .[15] Optimization of the flow of dividends. Uspekhi Mat. Nauk 50 (1995) 25-46. | MR | Zbl
and .[16] Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer, New York, 1991. | MR | Zbl
and .[17] Ruin probabilities and overshoots for general Lévy insurance risk processes. Ann. Appl. Probab. 14 (2004) 1766-1801. | MR | Zbl
, and .[18] On extreme ruinous behaviour of Lévy insurance risk processes. J. Appl. Probab. 43 (2006) 594-598. | MR | Zbl
and .[19] Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. | MR | Zbl
.[20] Distributional study of de Finetti's dividend problem for a general Lévy insurance risk process. J. Appl. Probab. 44 (2007) 349-365. | MR | Zbl
and .[21] Special, conjugate and complete scale functions for spectrally negative Lévy processes. Electron. J. Probab. 13 (2008) 1672-1701. | MR | Zbl
and .[22] Convexity and smoothness of scale functions and de Finetti's control problem, 2008. Available at arXiv:0801.1951v2. | MR
, and .[23] Completely asymmetric Lévy processes confined in a finite interval. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 251-274. | Numdam | MR | Zbl
.[24] The compound Poisson risk model with a threshold dividend strategy. Insurance Math. Econom. 38 (2006) 57-80. | MR | Zbl
and .[25] A potential theoretical review of some exit problems of spectrally negative Lévy processes. Séminaire de Probabilités 38 (2005) 30-41. | MR | Zbl
.[26] Distribution of the dividend payments in a general Lévy risk model. J. Appl. Probab. 44 (2007) 420-427. | MR | Zbl
and .[27] Evaluating first-passage probabilities for spectrally one-sided Lévy processes. J. Appl. Probab. 37 (2000) 1173-1180. | MR | Zbl
.[28] Theory of Stochastic Differential Equations with Jumps and Applications. Springer, New York, 2005. | MR | Zbl
.[29] A Concise Introduction to the Theory of Integration, 3rd edition. Birkhäuser, Boston, 1999. | MR | Zbl
.[30] On suprema of Lévy processes and application in risk theory. Ann. lnst. H. Poincaré Probab. Statist. 44 (2008) 977-986. | Numdam | MR | Zbl
and .[31] Evaluating scale functions of spectrally negative Lévy processes. J. Appl. Probab. 45 (2008) 135-149. | MR | Zbl
,[32] Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion. Insurance Math. Econom. 40 (2007) 509-523. | MR | Zbl
.[33] On strong solutions of stochastic. It equations with jumps. Teor. Veroyatnost. i Primenen. 32 (1987) 159-163. (In Russian.) | MR | Zbl
.[34] Stochastic-Process Limits. Springer, New York, 2002. | MR | Zbl
.[35] The Gerber-Shiu discounted penalty function for classical risk model with a two-step premium rate. Statist. Probab. Lett. 76 (2006) 1211-1218. | MR | Zbl
, and .[36] When does surplus reach a certain level before ruin? Insurance Math. Econom. 35 (2004) 553-561. | MR | Zbl
.[37] Discussion on: On optimal dividend strategies in the compound Poisson model by H. Gerber and E. Shiu. N. Am. Actuar. J. 10 (2006) 79-84. | MR
.Cited by Sources: