Let X be the branching particle diffusion corresponding to the operator Lu+β(u2-u) on D⊆ℝd (where β≥0 and β≢0). Let λc denote the generalized principal eigenvalue for the operator L+β on D and assume that it is finite. When λc>0 and L+β-λc satisfies certain spectral theoretical conditions, we prove that the random measure exp{-λct}Xt converges almost surely in the vague topology as t tends to infinity. This result is motivated by a cluster of articles due to Asmussen and Hering dating from the mid-seventies as well as the more recent work concerning analogous results for superdiffusions of [Ann. Probab. 30 (2002) 683-722, Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 171-185]. We extend significantly the results in [Z. Wahrsch. Verw. Gebiete 36 (1976) 195-212, Math. Scand. 39 (1977) 327-342, J. Funct. Anal. 250 (2007) 374-399] and include some key examples of the branching process literature. As far as the proofs are concerned, we appeal to modern techniques concerning martingales and “spine” decompositions or “immortal particle pictures.”
Soit X le processus de diffusion avec branchement correspondant à l'operateur Lu+β(u2-u) sur D⊆ℝd (où β≥0 et β≢0). La valeur propre principale généralisée de l'operateur L+β sur D est dénotée par λc et on la suppose finie. Quand λc>0 et L+β-λc satisfait certaines conditions spectrales théoriques, on montre que la mesure aléatoire exp{-λct}Xt converge presque sûrement pour la topologie vague quand t tend vers l'infini. Ce résultat est motivé par un ensemble d'articles par Asmussen et Hering datant du milieu des années soixante-dix, ainsi que par des travaux plus récents [Ann. Probab. 30 (2002) 683-722, Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 171-185] concernant des résultats analogues pour les superdiffusions. Nous généralisons de manière significative les résultats de [Z. Wahrsch. Verw. Gebiete 36 (1976) 195-212, Math. Scand. 39 (1977) 327-342, J. Funct. Anal. 250 (2007) 374-399] et nous donnons quelques exemples clés de la théorie des processus de branchement. En ce qui concerne les démonstrations, nous faisons appel aux techniques modernes de martingales et aux “spine decompositions” ou “immortal particle pictures.”
Keywords: law of large numbers, spine decomposition, spatial branching processes, branching diffusions, measure-valued processes, h-transform, criticality, product-criticality, generalized principal eigenvalue
@article{AIHPB_2010__46_1_279_0, author = {Engl\"ander, J\'anos and Harris, Simon C. and Kyprianou, Andreas E.}, title = {Strong law of large numbers for branching diffusions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {279--298}, publisher = {Gauthier-Villars}, volume = {46}, number = {1}, year = {2010}, doi = {10.1214/09-AIHP203}, mrnumber = {2641779}, zbl = {1196.60139}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP203/} }
TY - JOUR AU - Engländer, János AU - Harris, Simon C. AU - Kyprianou, Andreas E. TI - Strong law of large numbers for branching diffusions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 279 EP - 298 VL - 46 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP203/ DO - 10.1214/09-AIHP203 LA - en ID - AIHPB_2010__46_1_279_0 ER -
%0 Journal Article %A Engländer, János %A Harris, Simon C. %A Kyprianou, Andreas E. %T Strong law of large numbers for branching diffusions %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 279-298 %V 46 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/09-AIHP203/ %R 10.1214/09-AIHP203 %G en %F AIHPB_2010__46_1_279_0
Engländer, János; Harris, Simon C.; Kyprianou, Andreas E. Strong law of large numbers for branching diffusions. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 1, pp. 279-298. doi : 10.1214/09-AIHP203. http://archive.numdam.org/articles/10.1214/09-AIHP203/
[1] Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrsch. Verw. Gebiete 36 (1976) 195-212. | MR | Zbl
and .[2] Strong limit theorems for supercritical immigration-branching processes. Math. Scand. 39 (1977) 327-342. | EuDML | MR | Zbl
and .[3] Change of measures for Markov chains and the LlogL theorem for branching processes. Bernoulli 6 (2000) 323-338. | MR | Zbl
.[4] Uniform convergence in the branching random walk. Ann. Probab. 20 (1992) 137-151. | MR | Zbl
.[5] Measure change in multitype branching. Adv. in Appl. Probab. 36 (2004) 544-581. | MR | Zbl
and .[6] Algebra, analysis and probability for a coupled system of reaction-diffusion equations. Philos. Trans. R. Soc. Lond. Ser. A 350 (1995) 69-112. | MR | Zbl
, , , and .[7] KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields 80 (1988) 299-314. | MR | Zbl
and .[8] Limit theorems for branching Markov processes. J. Funct. Anal. 250 (2007) 374-399. | MR | Zbl
and .[9] An almost sure scaling limit theorem for Dawson-Watanabe superprocesses J. Funct. Anal. 254 (2008) 1988-2019. | MR | Zbl
, and .[10] Measure-valued Markov processes. In Ecole d'Eté Probabilités de Saint Flour XXI 1-260. Lecture Notes in Math. 1541. Springer, Berlin, 1993. | MR | Zbl
.[11] An Introduction to Branching Measure-Valued Processes. CRM Monograph Series 6. Amer. Math. Soc., Providence, RI, 1994. | MR | Zbl
.[12] Branching diffusions, superdiffusions and random media. Probab. Surv. 4 (2007) 303-364. | MR | Zbl
.[13] Law of large numbers for superdiffusions: The non-ergodic case. Ann. Inst. H. Poincare Probab. Statist. 45 (2009) 1-6. | Numdam | MR | Zbl
.[14] Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2003) 78-99. | MR | Zbl
and .[15] On the construction and support properties of measure-valued diffusions on D⊆Rd with spatially dependent branching. Ann. Probab. 27 (1999) 684-730. | MR | Zbl
and .[16] A scaling limit theorem for a class of superdiffusions. Ann. Probab. 30 (2002) 683-722. | MR | Zbl
and .[17] Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincare Probab. Statist. 42 (2006) 171-185. | Numdam | MR | Zbl
and .[18] An Introduction to Superprocesses. University Lecture Series 20. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
.[19] Two representations of a superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 959-971. | MR | Zbl
.[20] Exponential growth rates in a typed branching diffusion. Ann. Appl. Probab. 17 (2007) 609-653. | MR | Zbl
, and .[21] A conceptual approach to a path result for branching Brownian motion. Stochastic Process Appl. 116 (2006) 1992-2013. | MR | Zbl
and .[22] A spine approach to branching diffusions with applications to Lp-convergence of martingales. In Séminaire de Probabilités XLII. C. Donati-Martin, M. Émery, A. Rouault and C. Stricker (Eds). 1979, 2009. | MR | Zbl
and .[23] Convergence of a “Gibbs-Boltzman” random measure for a typed branching diffusion. In Séminaire de Probabilités XXXIV 239-256. Lecture Notes in Math. 1729. Springer, Berlin, 2000. | Numdam | MR | Zbl
.[24] Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin, 2003. | MR | Zbl
and .[25] Stability of critical cluster fields. Math. Nachr. 77 (1977) 7-43. | MR | Zbl
.[26] Conceptual proofs of L log L criteria for mean behaviour of branching processes. Ann. Probab. 23 (1995) 1125-1138. | MR | Zbl
, and .[27] Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, Cambridge, 1995. | MR | Zbl
.[28] Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24 (1996) 237-267. | MR | Zbl
.[29] A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8 (1968) 141-167. | MR | Zbl
.Cited by Sources: