In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh-Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions. Some applications to the goodness-of-fit test and the construction of bivariate distributions are proposed.
Dans cet article nous étudions les composantes principales non linéaires définies par Salinelli en 1998, dans le cas d'une variable aléatoire réelle. La signification probabiliste et statistique est approfondie et des propriétés sont illustrées. Une procédure d'estimation basée sur les fonctions splines, qui adapte la méthode classique de Rayleigh-Ritz, est présentée. Des propriétés asymptotiques de cet estimateur sont établies, et on donne une borne pour la vitesse de convergence sous des conditions générales. Des applications aux tests d'ajustement et à la construction de distributions bivariées sont proposées.
Keywords: covariance operator, Chernoff-Poincaré inequality, nonlinear principal components, splines estimates, Sturm-Liouville problems
@article{AIHPB_2010__46_3_653_0, author = {Goia, Aldo and Salinelli, Ernesto}, title = {Optimal nonlinear transformations of random variables}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {653--676}, publisher = {Gauthier-Villars}, volume = {46}, number = {3}, year = {2010}, doi = {10.1214/09-AIHP326}, mrnumber = {2682262}, zbl = {1201.62077}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP326/} }
TY - JOUR AU - Goia, Aldo AU - Salinelli, Ernesto TI - Optimal nonlinear transformations of random variables JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 653 EP - 676 VL - 46 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP326/ DO - 10.1214/09-AIHP326 LA - en ID - AIHPB_2010__46_3_653_0 ER -
%0 Journal Article %A Goia, Aldo %A Salinelli, Ernesto %T Optimal nonlinear transformations of random variables %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 653-676 %V 46 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/09-AIHP326/ %R 10.1214/09-AIHP326 %G en %F AIHPB_2010__46_3_653_0
Goia, Aldo; Salinelli, Ernesto. Optimal nonlinear transformations of random variables. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 3, pp. 653-676. doi : 10.1214/09-AIHP326. http://archive.numdam.org/articles/10.1214/09-AIHP326/
[1] Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces. Ric. Mat. LII (2003) 55-71. | MR
.[2] Mathematical Methods for Physicists. Academic Press, New York, 1966. | MR
.[3] Modelization, nonparametric estimation and prediction for continuous time process. In Nonparametric Functional Estimation and Related Topics 509-529. G. Roussas, (Ed.). Nato, Asi Series. Kluwer Academic, Dordrecht, 1991. | MR | Zbl
.[4] Rates of convergence for the estimate of the optimal transformations of variables. Ann. Statist. 19 (1991) 702-723. | MR | Zbl
.[5] Nonparametric estimation of a regression function. Ann. Statist. 17 (1989) 1567-1596. | MR | Zbl
and .[6] One-Dimensional Variational Problems. Oxford Lecture Series in Mathematics and Its Applications 15. Clarendon Press, New York, 1998. | MR | Zbl
, and .[7] On upper and lower-bounds for the variance of a function of a random variable. Ann. Probab. 10 (1982) 799-809. | MR | Zbl
.[8] On upper bounds for the variance of functions of random variables. Statist. Probab. Lett. 3 (1985) 175-184. | MR | Zbl
and .[9] Characterizations of distributions by variance bounds. Statist. Probab. Lett. 7 (1989) 351-356. | MR | Zbl
and .[10] Characterization of distributions by generalizations of variance bounds and simple proofs of the CLT. J. Statist. Plann. Inference 63 (1997) 157-171. | MR | Zbl
and .[11] Spatially adaptive splines for statistical linear inverse problems. J. Multivariate Anal. 81 (2002) 100-119. | MR | Zbl
.[12] Characterization of probability distributions by Poincaré-type inequalities. Ann. Inst. H. Poincaré Probab. Statist 23 (1987) 91-110. | Numdam | MR | Zbl
and .[13] A note on an inequality involving the normal distribution. Ann. Probab. 9 (1981) 533-535. | MR | Zbl
.[14] Methods of Mathematical Physics. Wiley, New York, 1989. | MR | Zbl
and .[15] Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 (1982) 136-154. | MR | Zbl
, and .[16] A Practical Guide to Splines. Springer, New York, 2001. | MR | Zbl
.[17] Rates of convergence for spline estimates of additive principal components. J. Multivariate Anal. 68 (1999) 120-137. | MR | Zbl
and .[18] Calculus of Variations. Prentice-Hall, New Jersey, 1963. | MR | Zbl
and .[19] Continuous and compact imbeddings of weighted Sobolev Spaces II. Czechoslovak Math. J. 39 (1989) 78-94. | MR | Zbl
and .[20] On an inequality of Chernoff. Ann. Probab. 13 (1985) 966-974. | MR | Zbl
.[21] How to define reasonably weighted Sobolev Spaces. Comment. Math. Univ. Carolin. 25 (1984) 537-554. | MR | Zbl
and .[22] Fisher information inequalities and the central limit theorem, Probab. Theory Related Fields 129 (2004) 391-409. | MR | Zbl
and .[23] Principal Component Analysis. Springer, Berlin, 2004. | MR | Zbl
.[24] The Chi-Squared Distribution. Wiley, New York, 1969. | MR | Zbl
.[25] Properties and applications of the Samarov family of bivariate distributions. Comm. Statist. Theory Methods 25 (1996) 1207-1222. | MR | Zbl
.[26] Correlation and Dependence. Imperial College Press, London, 2001. | MR | Zbl
and .[27] Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 (1973) 763-765. | MR | Zbl
.[28] Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems. I: Estimates relating Rayleigh-Ritz and Galerkin approximations to eigenfunctions. SIAM J. Numer. Anal. 9 (1972) 137-151. | MR | Zbl
and .[29] Characterization of uniform distributions by inequality of Chernoff-type, Sankhyā 52 (1990) 376-382. | MR | Zbl
and .[30] Nonlinear principal components I. Absolutely continuous random variables with positive bounded densities. Ann. Statist. 26 (1998) 596-616. | MR | Zbl
.[31] Nonlinear principal components II. Characterization of normal distributions. J. Multivariate Anal. 100 (2009) 652-660. | MR | Zbl
.[32] Spline Functions: Basic Theory. Wiley, New York, 1981. | MR | Zbl
.[33] Optimal global rate of convergence for nonparametric regression. Ann. Statist. 10 (1982) 1040-1053. | MR | Zbl
.[34] Sturm-Liouville Theory. Mathematical Survey and Monographs 121. Amer. Math. Soc., Providence, RI, 2005. | MR | Zbl
.Cited by Sources: