Les trajectoires quantiques sont des solutions d'équations différentielles stochastiques décrivant des phénomènes aléatoires associés aux principes de mesure (quantique) des systèmes quantiques ouverts. Ces équations, également appelées équations de Belavkin ou équations maîtresses stochastiques sont habituellement de deux types: soit diffusif soit de type saut. Dans cet article, nous considérons des modèles plus avancés où des équations de type saut-diffusion apparaissent. Ces équations sont obtenues comme solutions de problèmes de martingales. Ces problèmes de martingales sont obtenus comme limites continus (en temps) à partir de chaînes de Markov classiques décrivant des trajectoires quantiques pour des modèles à temps discret. Les résultats de cet article généralisent ceux de [Ann. Probab. 36 (2008) 2332-2353] et [Existence, uniqueness and approximation for stochastic Schrödinger equation: The Poisson case (2007)]. Ici, les techniques probabilistes utilisés sont complétement différentes afin de pouvoir mixer les deux types d'évolutions: diffusives et poissoniennes.
Quantum trajectories are solutions of stochastic differential equations obtained when describing the random phenomena associated to quantum continuous measurement of open quantum system. These equations, also called Belavkin equations or Stochastic Master equations, are usually of two different types: diffusive and of Poisson-type. In this article, we consider more advanced models in which jump-diffusion equations appear. These equations are obtained as a continuous time limit of martingale problems associated to classical Markov chains which describe quantum trajectories in a discrete time model. The results of this article goes much beyond those of [Ann. Probab. 36 (2008) 2332-2353] and [Existence, uniqueness and approximation for stochastic Schrödinger equation: The Poisson case (2007)]. The probabilistic techniques, used here, are completely different in order to merge these two radically different situations: diffusion and Poisson-type quantum trajectories.
Mots-clés : stochastic master equations, quantum trajectory, Jump-diffusion stochastic differential equation, stochastic convergence, Markov generators, martingale problem
@article{AIHPB_2010__46_4_924_0, author = {Pellegrini, Cl\'ement}, title = {Markov chains approximation of jump-diffusion stochastic master equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {924--948}, publisher = {Gauthier-Villars}, volume = {46}, number = {4}, year = {2010}, doi = {10.1214/09-AIHP330}, mrnumber = {2744878}, zbl = {1211.60020}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP330/} }
TY - JOUR AU - Pellegrini, Clément TI - Markov chains approximation of jump-diffusion stochastic master equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 924 EP - 948 VL - 46 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP330/ DO - 10.1214/09-AIHP330 LA - en ID - AIHPB_2010__46_4_924_0 ER -
%0 Journal Article %A Pellegrini, Clément %T Markov chains approximation of jump-diffusion stochastic master equations %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 924-948 %V 46 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/09-AIHP330/ %R 10.1214/09-AIHP330 %G en %F AIHPB_2010__46_4_924_0
Pellegrini, Clément. Markov chains approximation of jump-diffusion stochastic master equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 4, pp. 924-948. doi : 10.1214/09-AIHP330. http://archive.numdam.org/articles/10.1214/09-AIHP330/
[1] From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1) (2006) 59-104. | MR | Zbl
and .[2] Quantum Trajectories and Measurements in Continuous Time-the Diffusive Case. Lecture Notes in Physics 782. Springer, Berlin, 2009. | MR | Zbl
and .[3] Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A 24(7) (1991) 1495-1514. | MR
and .[4] Stochastic differential equations for trace-class operators and quantum continual measurements. In Stochastic Partial Differential Equations and Applications (Trento, 2002). Lecture Notes in Pure and Appl. Math. 227 53-67. Dekker, New York, 2002. | MR | Zbl
and .[5] On stochastic differential equations and semigroups of probability operators in quantum probability. Stochastic Process. Appl. 73(1) (1998) 69-86. | MR | Zbl
, and .[6] On a class of stochastic differential equations used in quantum optics. Rend. Sem. Mat. Fis. Milano 66 (1998) 355-376. | MR | Zbl
and .[7] Constructing quantum measurement processes via classical stochastic calculus. Stochastic Process. Appl. 58 (1995) 293-317. | MR | Zbl
and .[8] Stochastic differential equations with jumps. Probab. Surv. 1 (2004) 1-19 (electronic). | MR | Zbl
.[9] Quantum stochastic calculus and quantum nonlinear filtering. J. Multivariate Anal. 42 (1992) 171. | MR | Zbl
.[10] A stochastic Hamiltonian approach for quantum jumps, spontaneous localizations, and continuous trajectories. Quantum Semiclass. Opt. 8 (1996) 167. | MR
and .[11] Quantum diffusion, measurement and filtering. Probab. Theory Appl. 38 (1993) 742. | Zbl
and .[12] Quantum stochastic differential equation. J. Math. Phys. 41 (2000) 7220. | MR | Zbl
and .[13] Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | MR | Zbl
.[14] Stochastic Schrödinger equations. J. Phys. A 37(9) (2004) 3189-3209. | MR | Zbl
, and .[15] Point Processes and Queues. Springer, New York, 1981. | MR | Zbl
.[16] The Theory of Open Quantum Systems. Oxford Univ. Press, New York, 2002. | MR | Zbl
and .[17] Dissipative quantum systems in strong laser: Stochastic wave-function method and Floquet theory. Phys. Rev. A 55 (1997) 3101-3116.
and .[18] Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann. Appl. Probab. 15(3) (2005) 1713-1732. | MR | Zbl
, and .[19] Quantum Theory of Open Systems. Academic Press, London, 1976. | MR | Zbl
.[20] Markov Processes: Characterization and Convergence. Wiley, New York, 1986. | MR | Zbl
and .[21] Limit theorems for stochastic difference-differential equations. Nagoya Math. J. 127 (1992) 83-116. | MR | Zbl
and .[22] Exploring the Quantum. Oxford Univ. Press, Oxford, 2006. | MR | Zbl
and .[23] Calcul stochastique et problèmes de martingales. Lecture Notes in Math. 714. Springer, Berlin, 1979. | MR | Zbl
.[24] Quelques remarques sur un nouveau type d'équations différentielles stochastiques. In Seminar on Probability, XVI, Lecture Notes in Math. 920 447-458. Springer, Berlin, 1982. | Numdam | MR | Zbl
and .[25] Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin, 2003. | MR | Zbl
and .[26] Fundamentals of the Theory of Operator Algebras. Vol. I. Graduate Studies in Math. 15. Amer. Math. Soc., Providence, RI, 1997. | MR | Zbl
and .[27] Basic properties of non-linear stochastic Schrödinger equations driven by Brownian motions. Ann. Appl. Probab. 18 (2008) 591-619. | MR | Zbl
and .[28] Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19(3) (1991) 1035-1070. | MR | Zbl
and .[29] Existence, uniqueness and approximation for stochastic Schrödinger equation: The diffusive case. Ann. Probab. 36 (2008) 2332-2353. | MR | Zbl
.[30] Existence, uniqueness and approximation for stochastic Schrödinger equation: The Poisson case. Preprint, 2008. Available at arXiv:0709.3713. | MR | Zbl
.[31] Stochastic Integration and Differential Equations, 2nd edition. Applications of Mathematics (New York) 21. Springer, Berlin, 2004. | MR | Zbl
.[32] Multidimensional Diffusion Processes. Springer, Berlin, 2006. | MR | Zbl
and .Cité par Sources :