La continuité absolue, presque sûrement, est démontrée dans une classe de convolutions de Bernoulli symétrique, étendant un résultat de Peres et Solomyak.
We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric Bernoulli convolutions.
Mots-clés : Bernoulli convolutions, absolute continuity
@article{AIHPB_2010__46_3_888_0, author = {Bj\"orklund, Michael and Schnellmann, Daniel}, title = {Almost sure absolute continuity of {Bernoulli} convolutions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {888--893}, publisher = {Gauthier-Villars}, volume = {46}, number = {3}, year = {2010}, doi = {10.1214/09-AIHP334}, mrnumber = {2682271}, zbl = {1204.28004}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP334/} }
TY - JOUR AU - Björklund, Michael AU - Schnellmann, Daniel TI - Almost sure absolute continuity of Bernoulli convolutions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 888 EP - 893 VL - 46 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP334/ DO - 10.1214/09-AIHP334 LA - en ID - AIHPB_2010__46_3_888_0 ER -
%0 Journal Article %A Björklund, Michael %A Schnellmann, Daniel %T Almost sure absolute continuity of Bernoulli convolutions %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 888-893 %V 46 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/09-AIHP334/ %R 10.1214/09-AIHP334 %G en %F AIHPB_2010__46_3_888_0
Björklund, Michael; Schnellmann, Daniel. Almost sure absolute continuity of Bernoulli convolutions. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 3, pp. 888-893. doi : 10.1214/09-AIHP334. http://archive.numdam.org/articles/10.1214/09-AIHP334/
[1] Distribution functions and the Riemann Zeta function. Trans. Amer. Math. Soc. 38 (1935) 48-88. | JFM | MR
and .[2] On symmetric Bernoulli convolutions. Amer. J. Math. 57 (1935) 541-548. | JFM | MR
and .[3] Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3 (1996) 231-239. | MR | Zbl
and .[4] On the random series ∑±λn (an Erdös problem). Ann. of Math. (2) 142 (1995) 611-625. | MR | Zbl
.[5] On analytic convolutions of Bernoulli distributions. Amer. J. Math. 56 (1934) 659-663. | MR | Zbl
.[6] On symmetric Bernoulli convolutions. Bull. Amer. Math. Soc. 41 (1935) 137-138. | JFM | MR
.[7] On convergent Poisson convolutions. Amer. J. Math. 57 (1935) 827-838. | JFM | MR
.Cité par Sources :