Heat kernel for random walk trace on 3 and 4
Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 4, pp. 1001-1024.

We study the simple random walk X on the range of simple random walk on ℤ3 and ℤ4. In dimension four, we establish quenched bounds for the heat kernel of X and max0≤kn|Xk| which require extra logarithmic correction terms to the higher-dimensional case. In dimension three, we demonstrate anomalous behavior of X at the quenched level. In order to establish these estimates, we obtain several asymptotic estimates for cut times of simple random walk and asymptotic estimates for loop-erased random walk, which are of independent interest.

Nous étudions la marche aléatoire simple sur l'ensemble des points visités par une marche aléatoire simple sur ℤ3 et ℤ4. En dimension quatre, nous établissons des bornes presque sûres pour le noyau de la chaleur de X et pour max0≤kn|Xk| qui nécessitent des termes correctifs logarithmiques. En dimension trois, nous montrons que X à un comportement non diffusif presque sûrement. Pour démontrer ces résultats, nous obtenons des estimées asymptotiques pour les temps de coupure de la marche aléatoire simple et pour la marche à boucles effacées qui sont intéressantes en elles-mêmes.

DOI: 10.1214/09-AIHP337
Classification: 82C41
Keywords: random walk in random environment, random walk trace, heat kernel estimates, cut time, loop erased random walk
@article{AIHPB_2010__46_4_1001_0,
     author = {Shiraishi, Daisuke},
     title = {Heat kernel for random walk trace on $\mathbb {Z}^3$ and $\mathbb {Z}^4$},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1001--1024},
     publisher = {Gauthier-Villars},
     volume = {46},
     number = {4},
     year = {2010},
     doi = {10.1214/09-AIHP337},
     mrnumber = {2744883},
     zbl = {1208.82048},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/09-AIHP337/}
}
TY  - JOUR
AU  - Shiraishi, Daisuke
TI  - Heat kernel for random walk trace on $\mathbb {Z}^3$ and $\mathbb {Z}^4$
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2010
SP  - 1001
EP  - 1024
VL  - 46
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/09-AIHP337/
DO  - 10.1214/09-AIHP337
LA  - en
ID  - AIHPB_2010__46_4_1001_0
ER  - 
%0 Journal Article
%A Shiraishi, Daisuke
%T Heat kernel for random walk trace on $\mathbb {Z}^3$ and $\mathbb {Z}^4$
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2010
%P 1001-1024
%V 46
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/09-AIHP337/
%R 10.1214/09-AIHP337
%G en
%F AIHPB_2010__46_4_1001_0
Shiraishi, Daisuke. Heat kernel for random walk trace on $\mathbb {Z}^3$ and $\mathbb {Z}^4$. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 4, pp. 1001-1024. doi : 10.1214/09-AIHP337. http://archive.numdam.org/articles/10.1214/09-AIHP337/

[1] M. T. Barlow, A. A. Jarai, T. Kumagai and G. Slade. Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Comm. Math. Phys. 278 (2008) 385-431. | MR | Zbl

[2] I. Benjamini, O. Gurel-Gurevich and R. Lyons. Recurrence of random walk traces. Ann. Probab. 35 (2007) 732-738. | MR | Zbl

[3] D. A. Croydon. Random walk on the range of random walk. J. Stat. Phys. 136 (2009) 349-372. | MR | Zbl

[4] A. Dvoretzky and P. Erdos. Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, (1950) 353-367. Univ. California Press, Berkeley and Los Angeles, 1951. | MR | Zbl

[5] Y. Hamana. An almost sure invariance principle for the range of random walks. Stochastic Process. Appl. 78 (1998) 131-143. | MR | Zbl

[6] S. Havlin, G. H. Weiss, D. Ben-Avraham and D. Movshovitz. Structure of clusters generated by random walks. J. Phys. A 17 (1984) L849-L853.

[7] N. C. Jain and W. E. Pruitt. The range of transient random walk. J. Analyse Math. 24 (1971) 369-393. | MR | Zbl

[8] T. Kumagai and J. Misumi. Heat kernel estimates for strongly recurrent random walk on random media. J. Theoret. Probab. 21 (2008) 910-935. | MR | Zbl

[9] G. F. Lawler. Intersections of Random Walks. Birkhauser, Boston, 1991. | MR | Zbl

[10] G. F. Lawler. The logarithmic correction for loop-erased walk in four dimensions. In Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl. Special Issue (1995) 347-361. | MR | Zbl

[11] G. F. Lawler. Cut times for simple random walk. Electron. J. Probab. 1 (1996) 1-24. | MR | Zbl

[12] G. F. Lawler. A lower bound on the growth exponent for loop-erased random walk in two dimensions. ESAIM Probab. Statist. 3 (1999) 1-21. | Numdam | MR | Zbl

Cited by Sources: