Nous montrons que dans le cas de la percolation sur un graphe transitif la “condition du triangle” est équivalente à celle du “triangle ouvert”.
We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.
Mots-clés : percolation, Cayley graph, mean-field, triangle condition, operator theory, spectral theory
@article{AIHPB_2011__47_1_75_0, author = {Kozma, Gady}, title = {The triangle and the open triangle}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {75--79}, publisher = {Gauthier-Villars}, volume = {47}, number = {1}, year = {2011}, doi = {10.1214/09-AIHP352}, mrnumber = {2779397}, zbl = {1221.60140}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP352/} }
TY - JOUR AU - Kozma, Gady TI - The triangle and the open triangle JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 75 EP - 79 VL - 47 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP352/ DO - 10.1214/09-AIHP352 LA - en ID - AIHPB_2011__47_1_75_0 ER -
Kozma, Gady. The triangle and the open triangle. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 75-79. doi : 10.1214/09-AIHP352. http://archive.numdam.org/articles/10.1214/09-AIHP352/
[1] Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36 (1984) 107-143. | MR | Zbl
and .[2] Percolation critical exponents under the triangle condition. Ann. Probab. 19 (1991) 1520-1536. | MR | Zbl
and .[3] Percolation. Cambridge Univ. Press, New York, 2006. | MR | Zbl
and .[4] Functional Analysis. An Introduction. Graduate Studies in Mathematics 66. Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl
, and .[5] Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer-Verlag, Berlin, 1999. | MR
.[6] Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 (2003) 349-408. | MR | Zbl
, and .[7] Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 (1990) 333-391. | MR | Zbl
and .[8] Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21 (1993) 673-709. | MR | Zbl
and .[9] Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Statist. Phys. 132 (2008) 1001-1049. | MR | Zbl
, and .[10] Percolation on a product of two trees. In preparation.
.[11] The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178 (2009) 635-654. | Zbl
and .[12] Gap exponents for percolation processes with triangle condition. J. Statist. Phys. 49 (1987) 235-243. | MR | Zbl
.[13] Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Comm. Math. Phys. 219 (2001) 271-322. | MR | Zbl
.[14] Mean-field criticality for percolation on planar non-amenable graphs. Comm. Math. Phys. 225 (2002) 453-463. | MR | Zbl
.Cité par Sources :