Let S=(Sk)k≥0 be a random walk on ℤ and ξ=(ξi)i∈ℤ a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Un)n≥0, where Un=∑k=0nξSk, n∈ℕ. Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer's [Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25] theorem.
Soit S=(Sk)k≥0 une marche aléatoire sur ℤ et ξ=(ξi)i∈ℤ une suite stationnaire de variables aléatoires centrées, indépendante de S. Nous considérons une marche aléatoire en scène aléatoire définie par la suite de variables aléatoires (Un)n≥0=(∑k=0nξSk)n≥0. Sous une hypothèse de dépendance faible portant sur la scène ξ, nous montrons un théorème de la limite centrale fonctionnel généralisant le théorème de Kesten et Spitzer [Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25].
Keywords: random walks, random scenery, weak dependence, limit theorem, local time
@article{AIHPB_2010__46_4_1178_0, author = {Guillotin-Plantard, Nadine and Prieur, Cl\'ementine}, title = {Limit theorem for random walk in weakly dependent random scenery}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1178--1194}, publisher = {Gauthier-Villars}, volume = {46}, number = {4}, year = {2010}, doi = {10.1214/09-AIHP353}, mrnumber = {2744890}, zbl = {1219.60022}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP353/} }
TY - JOUR AU - Guillotin-Plantard, Nadine AU - Prieur, Clémentine TI - Limit theorem for random walk in weakly dependent random scenery JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 1178 EP - 1194 VL - 46 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP353/ DO - 10.1214/09-AIHP353 LA - en ID - AIHPB_2010__46_4_1178_0 ER -
%0 Journal Article %A Guillotin-Plantard, Nadine %A Prieur, Clémentine %T Limit theorem for random walk in weakly dependent random scenery %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 1178-1194 %V 46 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/09-AIHP353/ %R 10.1214/09-AIHP353 %G en %F AIHPB_2010__46_4_1178_0
Guillotin-Plantard, Nadine; Prieur, Clémentine. Limit theorem for random walk in weakly dependent random scenery. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 4, pp. 1178-1194. doi : 10.1214/09-AIHP353. http://archive.numdam.org/articles/10.1214/09-AIHP353/
[1] Iterates of expanding maps. Probab. Theory Related Fields 116 (2000) 151-180. | MR | Zbl
, and .[2] Random Walks with Stationary Increments and Renewal Theory. Math. Cent. Tracts. Amsterdam, 1979. | MR | Zbl
.[3] Convergence of Probability Measures. Wiley, New York-London-Sydney, 1968. | MR | Zbl
.[4] A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108-115. | MR | Zbl
.[5] Limit theorems for sums of independent random variables defined on a transient random walk. Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17-29, 237, 244. | MR | Zbl
.[6] A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk. SSSR 246 (1979) 786-787. | MR | Zbl
.[7] Etude de convergence en loi de fonctionnelles de processus: Formes quadratiques ou multilinéaires aléatoires, Temps locaux d'intersection de marches aléatoires, Théorème central limite presque sûr. Ph.D. dissertation, Université Rennes 1, 1995.
.[8] From charged polymers to random walk in random scenery. Preprint, 2008. Available at http://www.math.utk.edu/~xchen/publications.html. | MR
and .[9] Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory Related Fields 123 (2002) 301-322. | MR | Zbl
, and .[10] New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields 132 (2005) 203-236. | MR | Zbl
and .[11] Weak Dependence: With Examples and Applications. Lect. Notes in Stat. 190. Springer, New York, 2007. | MR | Zbl
, , , , and .[12] Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27-52. | MR | Zbl
and .[13] Discrete approximation of a stable self-similar stationary increments process. Bernoulli 15 (2009) 195-222. | MR | Zbl
and .[14] A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313-342. | MR | Zbl
and .[15] Transient random walks on 2d-oriented lattices. Theory Probab. Appl. 52 (2007) 815-826. | MR | Zbl
and .[16] A functional limit theorem for a 2d-random walk with dependent marginals. Electron. Comm. Probab. 13 (2008) 337-351. | EuDML | MR | Zbl
and .[17] Central limit theorem for sampled sums of dependent random variables. ESAIM P&S. To appear. | EuDML | Numdam | MR | Zbl
and .[18] Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119-140. | EuDML | MR | Zbl
and .[19] A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25. | MR | Zbl
and .[20] Wong-Zakai corrections, random evolutions, and numerical schemes for SEDs. In Stochastic Analysis 331-346. Academic Press, Boston, MA, 1991. | MR | Zbl
and .[21] Strongly correlated random fields as observed by a random walker. Probab. Theory Related Fields 64 (1983) 327-340. | MR | Zbl
and .[22] On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1974) 481-488. | MR | Zbl
and .[23] Limit theorems related to a class of operator-self-similar processes. Nagoya Math. J. 142 (1996) 161-181. | MR | Zbl
.[24] On the coupling of dependent random variables and applications. In Empirical Process Techniques for Dependent Data 171-193. Birkhäuser, Boston, MA, 2002. | MR | Zbl
and .[25] Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Japan 46 (1994) 309-343. | MR | Zbl
.[26] Some limit theorems for random functions I. Theory Probab. Appl. 4 (1959) 178-197. | MR | Zbl
and .[27] Principles of Random Walks, 2nd edition, Springer, New York, 1976. | MR | Zbl
.[28] Central limit theorem for dependent random variables. Probab. Theory Math. Statist. 2 (1990) 519-528. | MR | Zbl
.Cited by Sources: