In [Probab. Theory Related Fields 141 (2008) 543-567], the authors proved the uniqueness among the solutions of quadratic BSDEs with convex generators and unbounded terminal conditions which admit every exponential moments. In this paper, we prove that uniqueness holds among solutions which admit some given exponential moments. These exponential moments are natural as they are given by the existence theorem. Thanks to this uniqueness result we can strengthen the nonlinear Feynman-Kac formula proved in [Probab. Theory Related Fields 141 (2008) 543-567].
Les auteurs de l'article [Probab. Theory Related Fields 141 (2008) 543-567] ont prouvé un résultat d'unicité pour les solutions d'EDSRs quadratiques de générateur convexe et de condition terminale non bornée ayant tous leurs moments exponentiels finis. Dans ce papier, nous prouvons que ce résultat d'unicité reste vrai pour des solutions qui admettent uniquement certains moments exponentiels finis. Ces moments exponentiels sont reliés de manière naturelle à ceux présents dans le théorème d'existence. À l'aide de ce résultat d'unicité nous pouvons améliorer la formule de Feynman-Kac non linéaire prouvée dans [Probab. Theory Related Fields 141 (2008) 543-567].
Keywords: backward stochastic differential equations, generator of quadratic growth, unbounded terminal condition, uniqueness result, nonlinear Feynman-Kac formula
@article{AIHPB_2011__47_2_559_0, author = {Delbaen, Freddy and Hu, Ying and Richou, Adrien}, title = {On the uniqueness of solutions to quadratic {BSDEs} with convex generators and unbounded terminal conditions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {559--574}, publisher = {Gauthier-Villars}, volume = {47}, number = {2}, year = {2011}, doi = {10.1214/10-AIHP372}, mrnumber = {2814423}, zbl = {1225.60093}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP372/} }
TY - JOUR AU - Delbaen, Freddy AU - Hu, Ying AU - Richou, Adrien TI - On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 559 EP - 574 VL - 47 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP372/ DO - 10.1214/10-AIHP372 LA - en ID - AIHPB_2011__47_2_559_0 ER -
%0 Journal Article %A Delbaen, Freddy %A Hu, Ying %A Richou, Adrien %T On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 559-574 %V 47 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP372/ %R 10.1214/10-AIHP372 %G en %F AIHPB_2011__47_2_559_0
Delbaen, Freddy; Hu, Ying; Richou, Adrien. On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions. Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 2, pp. 559-574. doi : 10.1214/10-AIHP372. http://archive.numdam.org/articles/10.1214/10-AIHP372/
[1] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston, MA, 1997. | MR | Zbl
and .[2] Lp solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 (2003) 109-129. | MR | Zbl
, , , and .[3] BSDE with quadratic growth and unbounded terminal value. Probab. Theory Related Fields 136 (2006) 604-618. | MR | Zbl
and .[4] Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Related Fields 141 (2008) 543-567. | MR | Zbl
and .[5] Uniqueness results for convex Hamilton-Jacobi equations under p>1 growth conditions on data. Appl. Math. Optim. To appear. | MR
and .[6] Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications. SIAM J. Control Optim. 45 (2006) 74-106. | MR | Zbl
and .[7] Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1-71. | MR | Zbl
, and .[8] Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 (2000) 558-602. | MR | Zbl
.[9] Backward stochastic differential equations and quasilinear parabolic partial differential equations. In Stochastic Partial Differential Equations and Their Applications (Charlotte, NC, 1991) 200-217. Lecture Notes in Control and Inform. Sci. 176. Springer, Berlin, 1992. | MR | Zbl
and .Cited by Sources: