Nous étudions un processus de Markov sur un système de particules entrelacées. Lorsque le temps t est grand, les particules remplissent un domaine dépendant d'un paramètre ε > 0. Ce domaine possède deux points de rebroussement, dont l'un pointe vers le haut et l'autre vers le bas. À la limite ε ↓ 0, les deux points de rebroussement sont tangents, formant ainsi un tacnode. Le résultat principal de cet article est un calcul du noyau de corrélation locale autour du point tacnodal pendant le régime de transition ε ↓ 0. Nous démontrons aussi que le processus local interpole entre le processus de Pearcey et le processus des mineurs du GUE.
We study a Markov process on a system of interlacing particles. At large times the particles fill a domain that depends on a parameter ε > 0. The domain has two cusps, one pointing up and one pointing down. In the limit ε ↓ 0 the cusps touch, thus forming a tacnode. The main result of the paper is a derivation of the local correlation kernel around the tacnode in the transition regime ε ↓ 0. We also prove that the local process interpolates between the Pearcey process and the GUE minor process.
Mots clés : determinantal point processes, random growth, GUE minor process, pearcey process
@article{AIHPB_2011__47_1_243_0, author = {Borodin, Alexei and Duits, Maurice}, title = {Limits of determinantal processes near a tacnode}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {243--258}, publisher = {Gauthier-Villars}, volume = {47}, number = {1}, year = {2011}, doi = {10.1214/10-AIHP373}, mrnumber = {2779404}, zbl = {1208.82039}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP373/} }
TY - JOUR AU - Borodin, Alexei AU - Duits, Maurice TI - Limits of determinantal processes near a tacnode JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 243 EP - 258 VL - 47 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP373/ DO - 10.1214/10-AIHP373 LA - en ID - AIHPB_2011__47_1_243_0 ER -
%0 Journal Article %A Borodin, Alexei %A Duits, Maurice %T Limits of determinantal processes near a tacnode %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 243-258 %V 47 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP373/ %R 10.1214/10-AIHP373 %G en %F AIHPB_2011__47_1_243_0
Borodin, Alexei; Duits, Maurice. Limits of determinantal processes near a tacnode. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 243-258. doi : 10.1214/10-AIHP373. http://archive.numdam.org/articles/10.1214/10-AIHP373/
[1] Airy processes with wanderers and new universality classes. Available at arXiv:0811.1863. | Zbl
, and .[2] Large n limit of Gaussian random matrices with external source, part II. Comm. Math. Phys. 259 (2005) 367-389. | MR | Zbl
, and .[3] Periodic Schur process and cylindric partitions. Duke Math. J. 10 (2007) 1119-1178. | MR | Zbl
.[4] Determinantal point processes. Available at arXiv:0911.1153. | Zbl
.[5] Anisotropic growth of random surfaces in 2+1 dimensions. Available at arXiv:0804.3035. | Zbl
and .[6] Asymptotics of Plancherel-type random partitions. J. Algebra 313 (2007) 40-60. | MR | Zbl
and .[7] Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 (2000) 481-515. | MR | Zbl
, and .[8] Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E (3) 57 (1998) 7176-7185. | MR
and .[9] Level spacing of random matrices in an external source. Phys. Rev. E (3) 58 (1998) 4140-4149. | MR
and .[10] The universal Airy1 and Airy2 processes in the totally asymmetric simple exclusion process. In Integrable Systems and Random Matrices 321-332. Contemp. Math. 458. Amer. Math. Soc., Providence, RI, 2008. | MR | Zbl
.[11] Determinantal processes and independence. Probab. Surv. 3 (2006) 206-229. | MR | Zbl
, , and .[12] Random matrices and determinantal processes. Available at arXiv:math-ph/0510038. | MR
.[13] Eigenvalues of GUE minors. Electron. J. Probab. 11 (2006) 1342-1371. | MR | Zbl
and .[14] Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005) 385-447. | MR | Zbl
.[15] Determinantal probability measures. Publ. Math. Inst. Hautes Etudes Sci. 98 (2003) 167-212. | Numdam | MR | Zbl
.[16] Symmetric functions and random partitions. In Symmetric Functions 2001: Surveys of Developments and Perspectives 223-252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Academic, Dordrecht, 2002. | MR | Zbl
.[17] The birth of a random matrix. Moscow Math. J. 6 (2006) 553-566. | MR | Zbl
and .[18] Random skew plane partitions and the Pearcey process. Comm. Math. Phys. 269 (2007) 571-609. | MR | Zbl
and .[19] Scale invariance of the PNG Droplet and the Airy Process. J. Stat. Phys. 108 (2002) 1071-1106. | MR | Zbl
and .[20] Determinantal random point fields. Uspekhi Mat. Nauk 55 (2000) 107-160; translation in: Russian Math. Surveys 55 (2000) 923-975. | MR | Zbl
.[21] Determinantal random point fields. In Encyclopedia of Mathematical Physics 2 47-53. J. P. Françoise, G. L. Naber and T. S. Tsun (Eds.). Elsevier, Oxford, 2006. | Zbl
.[22] The Pearcey process. Comm. Math. Phys 263 (2006) 381-400. | MR | Zbl
and .Cité par Sources :