Nous démontrons que les équations différentielles stochastiques (EDS) conduites par des mouvements browniens fractionnaires à paramètre de Hurst H>½ ont des propriétés ergodiques similaires aux EDS usuelles conduites par des mouvements Browniens. L'intérêt principal du présent article est de pouvoir traiter également des systèmes hypoelliptiques satisfaisant la condition de Hörmander. Nous montrons qu'une version adéquate de la propriété de Feller forte est vérifiée par de tels systèmes et nous en déduisons que, sous une propriété de contrôlabilité usuelle, ils admettent une unique solution stationnaire qui ait un sens physique. L'ingrédient principal de notre analyse est une borne supérieure sur les moments inverses de la matrice de Malliavin associée, conditionnée au passé du bruit.
We demonstrate that stochastic differential equations (SDEs) driven by fractional brownian motion with Hurst parameter H>½ have similar ergodic properties as SDEs driven by standard brownian motion. The focus in this article is on hypoelliptic systems satisfying Hörmander's condition. We show that such systems enjoy a suitable version of the strong Feller property and we conclude that under a standard controllability condition they admit a unique stationary solution that is physical in the sense that it does not “look into the future.” The main technical result required for the analysis is a bound on the moments of the inverse of the Malliavin covariance matrix, conditional on the past of the driving noise.
Mots clés : ergodicity, fractional brownian motion, Hörmander's theorem
@article{AIHPB_2011__47_2_601_0, author = {Hairer, M. and Pillai, N. S.}, title = {Ergodicity of hypoelliptic {SDEs} driven by fractional brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {601--628}, publisher = {Gauthier-Villars}, volume = {47}, number = {2}, year = {2011}, doi = {10.1214/10-AIHP377}, mrnumber = {2814425}, zbl = {1221.60083}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP377/} }
TY - JOUR AU - Hairer, M. AU - Pillai, N. S. TI - Ergodicity of hypoelliptic SDEs driven by fractional brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 601 EP - 628 VL - 47 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP377/ DO - 10.1214/10-AIHP377 LA - en ID - AIHPB_2011__47_2_601_0 ER -
%0 Journal Article %A Hairer, M. %A Pillai, N. S. %T Ergodicity of hypoelliptic SDEs driven by fractional brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 601-628 %V 47 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP377/ %R 10.1214/10-AIHP377 %G en %F AIHPB_2011__47_2_601_0
Hairer, M.; Pillai, N. S. Ergodicity of hypoelliptic SDEs driven by fractional brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 2, pp. 601-628. doi : 10.1214/10-AIHP377. http://archive.numdam.org/articles/10.1214/10-AIHP377/
[1] Random Dynamical Systems. Springer, Berlin, 1998. | MR | Zbl
.[2] Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007) 550-574. | MR | Zbl
and .[3] A version of Hörmander's theorem for the fractional Brownian motion. Probab. Theory Related Fields 139 (2007) 373-395. | MR | Zbl
and .[4] Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions. Z. Wahrsch. Verw. Gebiete 56 (1981) 469-505. | MR | Zbl
.[5] Gaussian Measures. Mathematical Surveys and Monographs 62. Amer. Math. Soc., Providence, RI, 1998. | MR | Zbl
.[6] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR | Zbl
and .[7] Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995) 35-45. | MR | Zbl
, and .[8] Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series 229. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
and .[9] Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 (1994) 252-286. | MR | Zbl
and .[10] Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
.[11] Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33 (2005) 703-758. | MR | Zbl
.[12] Ergodic properties of a class of non-Markovian processes. In Trends in Stochastic Analysis. LMS Lecture Note Series 353. Cambridge Univ. Press, Cambridge, 2009. | MR | Zbl
.[13] Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 (2006) 993-1032. | MR | Zbl
and .[14] A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Preprint, 2009. | MR
and .[15] Differential equations driven by Hölder continuous functions of order greater than 1/2. In Stochastic Analysis and Applications 399-413. Abel Symp. 2. Springer, Berlin, 2007. | MR | Zbl
and .[16] Ergodic theory for SDEs with extrinsic memory. Ann. Probab. 35 (2007) 1950-1977. | MR | Zbl
and .[17] Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147-171. | MR | Zbl
.[18] Applications of the Malliavin calculus. I. In Stochastic Analysis (Katata/Kyoto, 1982) 271-306. North-Holland Math. Library 32. North-Holland, Amsterdam, 1984. | MR | Zbl
and .[19] Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985) 1-76. | MR | Zbl
and .[20] Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 391-442. | MR | Zbl
and .[21] System Control and Rough Paths. Oxford Univ. Press, Oxford, 2002. | MR | Zbl
and .[22] Stochastic calculus of variations and hypoelliptic operators. In Symp. on Stoch. Diff. Equations, Kyoto 1976 147-171. Wiley, New York, 1978. | MR | Zbl
.[23] Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften 313. Springer, Berlin, 1997. | MR | Zbl
.[24] Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics 1929. Springer, Berlin, 2008. | MR | Zbl
.[25] Optimal control for rough differential equations. Stoch. Dyn. 8 (2008) 23-33. | MR | Zbl
and .[26] Markov Chains and Stochastic Stability. Springer, London, 1993. | MR | Zbl
and .[27] Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. | MR | Zbl
and .[28] Simplified Malliavin calculus. In Séminaire de Probabilités, XX, 1984/85 101-130. Lecture Notes in Math. 1204. Springer, Berlin, 1986. | Numdam | MR | Zbl
.[29] On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist. Probab. Lett. 76 (2006) 907-912. | MR | Zbl
and .[30] Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl. 119 (2009) 391-409. | MR | Zbl
and .[31] The Malliavin Calculus and Related Topics, 2nd edition. Springer, Berlin, 2006. | MR | Zbl
.[32] Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon, 1993. | MR | Zbl
, and .[33] Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. | MR | Zbl
and .[34] An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936) 251-282. | MR | Zbl
.Cité par Sources :