Spectral gaps and exponential integrability of hitting times for linear diffusions
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 3, pp. 679-698.

Soit X un processus de Markov récurrent positif à trajectoires continues et à valeurs dans ℝ. Soient S sa fonction d'échelle et m sa mesure de vitesse. Pour a∈ℝ notons Ba+=supxam(]x, +∞[)(S(x)-S(a)), Ba-=supxam(]-∞; x[)(S(a)-S(x)). Il est bien connu que la finitude de Ba± est équivalente à l'existence d'un trou spectral du générateur associé à X. Nous montrons comment ces quantités apparaissent d'une manière indépendante dans l'étude des temps d'atteinte de X. Ensuite nous établissons une relation directe entre les moments exponentiels et le trou spectral, en améliorant en plus leurs encadrements classiques.

Let X be a regular continuous positively recurrent Markov process with state space ℝ, scale function S and speed measure m. For a∈ℝ denote Ba+=supxam(]x, +∞[)(S(x)-S(a)), Ba-=supxam(]-∞; x[)(S(a)-S(x)). It is well known that the finiteness of Ba± is equivalent to the existence of spectral gaps of generators associated with X. We show how these quantities appear independently in the study of the exponential moments of hitting times of X. Then we establish a very direct relation between exponential moments and spectral gaps, all by improving their classical bounds.

DOI : 10.1214/10-AIHP380
Classification : 60J25, 60J35, 60J60
Mots clés : recurrence, linear Markov process, exponential moments, hitting times, Poincaré inequality, spectral gap, Dirichlet form
@article{AIHPB_2011__47_3_679_0,
     author = {Loukianov, Oleg and Loukianova, Dasha and Song, Shiqi},
     title = {Spectral gaps and exponential integrability of hitting times for linear diffusions},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {679--698},
     publisher = {Gauthier-Villars},
     volume = {47},
     number = {3},
     year = {2011},
     doi = {10.1214/10-AIHP380},
     mrnumber = {2841071},
     zbl = {1233.60044},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/10-AIHP380/}
}
TY  - JOUR
AU  - Loukianov, Oleg
AU  - Loukianova, Dasha
AU  - Song, Shiqi
TI  - Spectral gaps and exponential integrability of hitting times for linear diffusions
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2011
SP  - 679
EP  - 698
VL  - 47
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/10-AIHP380/
DO  - 10.1214/10-AIHP380
LA  - en
ID  - AIHPB_2011__47_3_679_0
ER  - 
%0 Journal Article
%A Loukianov, Oleg
%A Loukianova, Dasha
%A Song, Shiqi
%T Spectral gaps and exponential integrability of hitting times for linear diffusions
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2011
%P 679-698
%V 47
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/10-AIHP380/
%R 10.1214/10-AIHP380
%G en
%F AIHPB_2011__47_3_679_0
Loukianov, Oleg; Loukianova, Dasha; Song, Shiqi. Spectral gaps and exponential integrability of hitting times for linear diffusions. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 3, pp. 679-698. doi : 10.1214/10-AIHP380. http://archive.numdam.org/articles/10.1214/10-AIHP380/

[1] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes. In Lecture on Probability Theory, Saint Flour 1992 1-114. Lecture Notes in Mathematics 1581. Springer, Berlin, 1994. | MR | Zbl

[2] S. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1-28. | MR | Zbl

[3] A. Borodin and P. Salminen. Handbook of Brownian Motion - Facts and Formulae, 2nd edition. Birkhäuser, Basel, 2002. | MR | Zbl

[4] R. Carmona and A. Klein. Exponential moments for hitting times of uniformly ergodic Markov processes. Ann. Probab. 11 (1983) 648-665. | MR | Zbl

[5] D. A. Darling and M. Kac. On occupation time of Markov processes. Trans. Amer. Math. Soc. 84 (1957) 444-458. | MR | Zbl

[6] M. Deaconu and S. Wantz. Comportement des temps d'atteinte d'une diffusion fortement rentrante. In Seminaire de probabilités (Strasbourg), XXXI 168-175. Lecture Notes in Math. 1655. Springer, Berlin, 1997. | Numdam | MR | Zbl

[7] S. Ditlevsen. A result on the first-passage time of an Ornstein-Uhlenbeck process. Statist. Probab. Lett. 77 (2007) 1744-1749. | MR | Zbl

[8] D. Down, S. P. Meyn and R. L. Tweedy. Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23 (1995) 1671-1691. | MR | Zbl

[9] P. J. Fitzsimmons and J. Pitman. Kac's moment formula and the Feyman-Kac formula for additive functionals of a Markov process. Stochastic Process. Appl. 79 (1999) 117-134. | MR | Zbl

[10] A. Friedman. The asymptotic behavior of the first real eigenvalue of a second order elliptic operator with a small parameter in the highest derivatives. Indiana Univ. Math. J. 22 (1973) 1005-1015. | MR | Zbl

[11] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. Walter de Gruyter, Berlin, 1994. | MR | Zbl

[12] V. Giorno, A. G. Nobile, L. Riccardi and L. Sacredote. Some remarks on the Raleigh process. J. Appl. Probab. 23 (1986) 398-408. | MR | Zbl

[13] M. Kac. On the distribution of certain Wiener functionals. Trans. Amer. Math. Soc. 65 (1949) 1-13. | MR | Zbl

[14] M. Kac. On some connections between probability theory and differential and integral equations. In Proc. 2nd Berkeley Symp. Math. Stat. Prob. 189-215. J. Neyman (Ed.). Univ. of California Press, Berkeley, CA, 1951. | MR | Zbl

[15] I. S. Kac and M. G. Krein. Criteria for the discreteness of the spectrum of a singular string. (Russian) Izv. Vyss. Ucebn. Zaved. Matematika 2 (1958) 136-153. | MR

[16] R. Z. Khasminskii. On positive solutions of the equation Ru+Vu=0. Theory. Probab. Appl. 4 (1959) 309-318.

[17] S. Kotani and S. Watanabe. Krein's spectral theory of strings and generalized diffusion processes. In Functional Analysis in Markov Processes (Katata/Kyoto, 1981) 235-259. Lecture Notes in Math. 923. Springer, Berlin, 1982. | MR | Zbl

[18] E. Löcherbach, D. Loukianova and O. Loukianov. Polynomial bounds in the ergodic theorem for positive recurrent one-dimensional diffusions and integrability of hitting times. Ann. Inst. Henri Poincaré Probab. Stat. To appear. Available at arXiv:0903.2405. | Numdam | MR | Zbl

[19] O. Loukianov, D. Loukianova and S. Song. Poincare inequality and exponential integrability of hitting times for a linear diffusion. Prépublications de l'Equipe d'Analyse et Probabilités, n. 286. Université d'Evry, France, 2009. Available at arXiv:0903.2405.

[20] F. Malrieu and C. Roberto. Les inégalités de Sobolev logarithmiques et le trou spectral sur la droite reelle. In Sur les inégalités de Sobolev logarithmiques 97-112. Collection Panoramas et Synthèses de la SMF 10. Editions de la Société Mathématique de France, 2000.

[21] L. Miclo. Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite? Ann. Fac. Sci. Toulouse Math. (6) 17 (2008) 121-192. | Numdam | MR | Zbl

[22] B. Muckenhoupt. Hardy's inequality with weights. Studia Math. XLIV (1972) 31-38. | MR | Zbl

[23] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 2nd edition. Springer, Berlin, 1994. | MR | Zbl

[24] M. Rökner and F. Wang. Weak Poincaré inequalities and L2-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564-603. | MR | Zbl

Cité par Sources :