Variational representations for continuous time processes
Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 3, pp. 725-747.

A variational formula for positive functionals of a Poisson random measure and brownian motion is proved. The formula is based on the relative entropy representation for exponential integrals, and can be used to prove large deviation type estimates. A general large deviation result is proved, and illustrated with an example.

Une formule variationnelle pour des fonctionnelles positives d'une mesure de Poisson aléatoire et d'un mouvement brownien est démontrée. Cette formule provient de la représentation des intégrales exponentielles par l'entropie relative, et peut être utilisée pour obtenir des estimées de grandes déviations. Un résultat de grandes déviations général est démontré.

DOI: 10.1214/10-AIHP382
Classification: 60F10, 60G51, 60H15
Keywords: variational representations, Poisson random measure, infinite-dimensional brownian motion, large deviations, jump-diffusions
@article{AIHPB_2011__47_3_725_0,
     author = {Budhiraja, Amarjit and Dupuis, Paul and Maroulas, Vasileios},
     title = {Variational representations for continuous time processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {725--747},
     publisher = {Gauthier-Villars},
     volume = {47},
     number = {3},
     year = {2011},
     doi = {10.1214/10-AIHP382},
     mrnumber = {2841073},
     zbl = {1231.60018},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/10-AIHP382/}
}
TY  - JOUR
AU  - Budhiraja, Amarjit
AU  - Dupuis, Paul
AU  - Maroulas, Vasileios
TI  - Variational representations for continuous time processes
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2011
SP  - 725
EP  - 747
VL  - 47
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/10-AIHP382/
DO  - 10.1214/10-AIHP382
LA  - en
ID  - AIHPB_2011__47_3_725_0
ER  - 
%0 Journal Article
%A Budhiraja, Amarjit
%A Dupuis, Paul
%A Maroulas, Vasileios
%T Variational representations for continuous time processes
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2011
%P 725-747
%V 47
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/10-AIHP382/
%R 10.1214/10-AIHP382
%G en
%F AIHPB_2011__47_3_725_0
Budhiraja, Amarjit; Dupuis, Paul; Maroulas, Vasileios. Variational representations for continuous time processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 3, pp. 725-747. doi : 10.1214/10-AIHP382. http://archive.numdam.org/articles/10.1214/10-AIHP382/

[1] H. Bessaih and A. Millet. Large deviation principle and inviscid shell models. Electron. J. Probab. (2009) 14 2551-2579. | MR | Zbl

[2] M. Boue and P. Dupuis. A variational representation for certain functionals of Brownian motion. Ann. Probab. 26 (1998) 1641-1659. | MR | Zbl

[3] M. Boué, P. Dupuis and R. S. Ellis. Large deviations for small noise diffusions with discontinuous statistics. Probab. Theory Related Fields 116 (2000) 125-149. | MR | Zbl

[4] A. Budhiraja and P. Dupuis. A variational representation for positive functional of infinite dimensional Brownian motions. Probab. Math. Statist. 20 (2000) 39-61. | MR | Zbl

[5] A. Budhiraja, P. Dupuis and M. Fischer. Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. To appear.

[6] A. Budhiraja, P. Dupuis and V. Maroulas. Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36 (2008) 1390-1420. | MR | Zbl

[7] A. Budhiraja, P. Dupuis and V. Maroulas. Large deviations for stochastic flows of diffeomorphisms. Bernoulli 36 (2010) 234-257. | MR

[8] I. Chueshov and A. Millet. Stochastic 2D hydrodynamical type systems: Well posedness and large deviations. Appl. Math. Optim. 61 (2010) 379-420. | MR | Zbl

[9] A. Du, J. Duan and H. Gao. Small probability events for two-layer geophysical flows under uncertainty. Preprint.

[10] J. Duan and A. Millet. Large deviations for the Boussinesq equations under random influences. Stochastic Process. Appl. 119 (2009) 2052-2081. | MR | Zbl

[11] P. Dupuis and R. Ellis. A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York, 1997. | MR | Zbl

[12] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981. | MR | Zbl

[13] J. Jacod. A general theorem of representation for martingales. In Proceedings of Symposia in Pure Mathematics 31 37-53. Amer. Math. Soc., Providence, RI, 1977. | MR | Zbl

[14] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin, 1987. | MR | Zbl

[15] H. J. Kushner. Numerical methods for stochastic control problems in continuous time. SIAM J. Control Optim. 28 (1990) 999-1048. | MR | Zbl

[16] H. J. Kushner and P. Dupuis. Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd edition. Springer, New York, 2001. | MR | Zbl

[17] W. Liu. Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61 (2010) 27-56. | MR

[18] U. Manna, S. S. Sritharan and P. Sundar. Large deviations for the stochastic shell model of turbulence. Nonlinear Differential Equations Appl. 16 (2009) 493-521. | MR | Zbl

[19] J. Ren and X. Zhang. Freidlin-Wentzell's large deviations for homeomorphism flows of non-Lipschitz SDEs. Bull. Sci. Math. 129 (2005) 643-655. | MR | Zbl

[20] J. Ren and X. Zhang. Schilder theorem for the Brownian motion on the diffeomorphism group of the circle. J. Funct. Anal. 224 (2005) 107-133. | MR | Zbl

[21] M. Rockner, T. Zhang and X. Zhang. Large deviations for stochastic tamed 3D Navier-Stokes equations. Appl. Math. Optim. 61 (2010) 267-285. | MR | Zbl

[22] H. L. Royden. Real Analysis. Prentice Hall, Englewood Cliffs, NJ, 1988. | MR | Zbl

[23] S. S. Sritharan and P. Sundar. Large deviations for the two dimensional Navier-Stokes equations with multiplicative noise. Stochastic Process. Appl. 116 (2006) 1636-1659. | MR | Zbl

[24] W. Wang and J. Duan. Reductions and deviations for stochastic partial differential equations under fast dynamical boundary conditions. Stoch. Anal. Appl. 27 (2009) 431-459. | MR | Zbl

[25] D. Yang and Z. Hou. Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise. Phys. D 237 (2008) 82-91. | MR | Zbl

[26] X. Zhang. Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J. Differential Equations 244 (2008) 2226-2250. | MR | Zbl

[27] X. Zhang. A variational representation for random functionals on abstract Wiener spaces. J. Math. Kyoto Univ. 9 (2009) 475-490. | MR | Zbl

[28] X. Zhang. Clark-Ocone formula and variational representation for Poisson functionals. Ann. Probab. 37 (2009) 506-529. | MR | Zbl

[29] X. Zhang. Stochastic Volterra equations in Banach spaces and stochastic partial differential equations. J. Funct. Anal. 258 (2010) 1361-1425. | MR | Zbl

Cited by Sources: