A variational formula for positive functionals of a Poisson random measure and brownian motion is proved. The formula is based on the relative entropy representation for exponential integrals, and can be used to prove large deviation type estimates. A general large deviation result is proved, and illustrated with an example.
Une formule variationnelle pour des fonctionnelles positives d'une mesure de Poisson aléatoire et d'un mouvement brownien est démontrée. Cette formule provient de la représentation des intégrales exponentielles par l'entropie relative, et peut être utilisée pour obtenir des estimées de grandes déviations. Un résultat de grandes déviations général est démontré.
Keywords: variational representations, Poisson random measure, infinite-dimensional brownian motion, large deviations, jump-diffusions
@article{AIHPB_2011__47_3_725_0, author = {Budhiraja, Amarjit and Dupuis, Paul and Maroulas, Vasileios}, title = {Variational representations for continuous time processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {725--747}, publisher = {Gauthier-Villars}, volume = {47}, number = {3}, year = {2011}, doi = {10.1214/10-AIHP382}, mrnumber = {2841073}, zbl = {1231.60018}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP382/} }
TY - JOUR AU - Budhiraja, Amarjit AU - Dupuis, Paul AU - Maroulas, Vasileios TI - Variational representations for continuous time processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 725 EP - 747 VL - 47 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP382/ DO - 10.1214/10-AIHP382 LA - en ID - AIHPB_2011__47_3_725_0 ER -
%0 Journal Article %A Budhiraja, Amarjit %A Dupuis, Paul %A Maroulas, Vasileios %T Variational representations for continuous time processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 725-747 %V 47 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP382/ %R 10.1214/10-AIHP382 %G en %F AIHPB_2011__47_3_725_0
Budhiraja, Amarjit; Dupuis, Paul; Maroulas, Vasileios. Variational representations for continuous time processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 3, pp. 725-747. doi : 10.1214/10-AIHP382. http://archive.numdam.org/articles/10.1214/10-AIHP382/
[1] Large deviation principle and inviscid shell models. Electron. J. Probab. (2009) 14 2551-2579. | MR | Zbl
and .[2] A variational representation for certain functionals of Brownian motion. Ann. Probab. 26 (1998) 1641-1659. | MR | Zbl
and .[3] Large deviations for small noise diffusions with discontinuous statistics. Probab. Theory Related Fields 116 (2000) 125-149. | MR | Zbl
, and .[4] A variational representation for positive functional of infinite dimensional Brownian motions. Probab. Math. Statist. 20 (2000) 39-61. | MR | Zbl
and .[5] Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. To appear.
, and .[6] Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36 (2008) 1390-1420. | MR | Zbl
, and .[7] Large deviations for stochastic flows of diffeomorphisms. Bernoulli 36 (2010) 234-257. | MR
, and .[8] Stochastic 2D hydrodynamical type systems: Well posedness and large deviations. Appl. Math. Optim. 61 (2010) 379-420. | MR | Zbl
and .[9] Small probability events for two-layer geophysical flows under uncertainty. Preprint.
, and .[10] Large deviations for the Boussinesq equations under random influences. Stochastic Process. Appl. 119 (2009) 2052-2081. | MR | Zbl
and .[11] A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York, 1997. | MR | Zbl
and .[12] Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981. | MR | Zbl
and .[13] A general theorem of representation for martingales. In Proceedings of Symposia in Pure Mathematics 31 37-53. Amer. Math. Soc., Providence, RI, 1977. | MR | Zbl
.[14] Limit Theorems for Stochastic Processes. Springer, Berlin, 1987. | MR | Zbl
and .[15] Numerical methods for stochastic control problems in continuous time. SIAM J. Control Optim. 28 (1990) 999-1048. | MR | Zbl
.[16] Numerical Methods for Stochastic Control Problems in Continuous Time, 2nd edition. Springer, New York, 2001. | MR | Zbl
and .[17] Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61 (2010) 27-56. | MR
.[18] Large deviations for the stochastic shell model of turbulence. Nonlinear Differential Equations Appl. 16 (2009) 493-521. | MR | Zbl
, and .[19] Freidlin-Wentzell's large deviations for homeomorphism flows of non-Lipschitz SDEs. Bull. Sci. Math. 129 (2005) 643-655. | MR | Zbl
and .[20] Schilder theorem for the Brownian motion on the diffeomorphism group of the circle. J. Funct. Anal. 224 (2005) 107-133. | MR | Zbl
and .[21] Large deviations for stochastic tamed 3D Navier-Stokes equations. Appl. Math. Optim. 61 (2010) 267-285. | MR | Zbl
, and .[22] Real Analysis. Prentice Hall, Englewood Cliffs, NJ, 1988. | MR | Zbl
.[23] Large deviations for the two dimensional Navier-Stokes equations with multiplicative noise. Stochastic Process. Appl. 116 (2006) 1636-1659. | MR | Zbl
and .[24] Reductions and deviations for stochastic partial differential equations under fast dynamical boundary conditions. Stoch. Anal. Appl. 27 (2009) 431-459. | MR | Zbl
and .[25] Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise. Phys. D 237 (2008) 82-91. | MR | Zbl
and .[26] Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J. Differential Equations 244 (2008) 2226-2250. | MR | Zbl
.[27] A variational representation for random functionals on abstract Wiener spaces. J. Math. Kyoto Univ. 9 (2009) 475-490. | MR | Zbl
.[28] Clark-Ocone formula and variational representation for Poisson functionals. Ann. Probab. 37 (2009) 506-529. | MR | Zbl
.[29] Stochastic Volterra equations in Banach spaces and stochastic partial differential equations. J. Funct. Anal. 258 (2010) 1361-1425. | MR | Zbl
.Cited by Sources: